0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Compressive Strength Prediction of Stabilized Dredged Sediments Using Artificial Neural Network

Autor(en): ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2021
Seite(n): 1-8
DOI: 10.1155/2021/6656084
Abstrakt:

Stabilized dredged sediments are used as a backfilling material to reduce construction costs and a solution to environmental protection. Therefore, the compressive strength is an important criterion to determine the stabilized dredged sediments application such as road construction, building construction, and highway construction. Using the traditional method such as empirical approach and experimental methods, the determination of compressive strength of stabilized dredged sediments is difficult due to the complexity of this composite material. In this investigation, the artificial neural network (ANN) model is introduced to forecast the compressive strength. To perform the simulation, 51 experimental datasets were collected from the literature. The dataset consists of 4 input variables (water content, cement content, air foam content, and waste fishing net content) and output variable (compressive strength). Evaluation of the models was made and compared on training dataset (70% data) and testing dataset (30% remaining data) by the criteria of Pearson’s correlation coefficient (R), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The results show that the ANN model can accurately predict the compressive strength of stabilized dredged sediments with low water content. The cement content is the most important input affecting the unconfined compressive strength. The important input affecting the unconfined compressive strength can be in the following order: cement content > air foam content > water content > waste fishing net.

Copyright: © 2021 Van Quan Tran et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10602076
  • Veröffentlicht am:
    17.04.2021
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine