0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Comparing univariate techniques for tender price index forecasting: Box-Jenkins and neural network model

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Construction Economics and Building, , n. 3, v. 17
Page(s): 109-123
DOI: 10.5130/ajceb.v17i3.5524
Abstrait:

The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.5130/ajceb.v17i3.5524.
  • Informations
    sur cette fiche
  • Reference-ID
    10338505
  • Publié(e) le:
    05.08.2019
  • Modifié(e) le:
    05.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine