0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Comparing univariate techniques for tender price index forecasting: Box-Jenkins and neural network model

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Construction Economics and Building, , n. 3, v. 17
Seite(n): 109-123
DOI: 10.5130/ajceb.v17i3.5524
Abstrakt:

The poor performance of projects is a recurring event in the construction sector. Information gleaned from literature shows that uncertainty in project cost is one of the significant causes of this problem. Reliable forecast of construction cost is useful in mitigating the adverse effect of its fluctuation, however the availability of data for the development of multivariate models for construction cost forecasting remains a challenge. The study seeks to investigate the reliability of using univariate models for tender price index forecasting. Box-Jenkins and neural network are the modelling techniques applied in this study. The results show that the neural network model outperforms the Box-Jenkins model, in terms of accuracy. In addition, the neural network model provides a reliable forecast of tender price index over a period of 12 quarters ahead. The limitations of using the univariate models are elaborated. The developed neural network model can be used by stakeholders as a tool for predicting the movements in tender price index. In addition, the univariate models developed in the present study are particularly useful in countries where limited data reduces the possibility of applying multivariate models.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.5130/ajceb.v17i3.5524.
  • Über diese
    Datenseite
  • Reference-ID
    10338505
  • Veröffentlicht am:
    05.08.2019
  • Geändert am:
    05.08.2019
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine