0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Comparative Analysis by Experimental Investigations on Normal and Ground Ultrafine Mineral Admixtures in Arresting Permeation in High-Strength Concrete

Auteur(s): ORCID
ORCID

ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-11
DOI: 10.1155/2022/3831580
Abstrait:

This paper discusses the permeation characteristics of concrete made by increasing the fineness of the conventional mineral admixtures and using them as a partial substitute for cement. Silica fume and metakaolin ground to ultrafine state and ceramic powder obtained from grinding waste ceramic tiles were used as mineral admixtures. The mixes were designed for a compressive strength of 50 MPa and were prepared for both binary and ternary blended cases. Binary blended specimens were cast, partially replacing cement with unground silica fume, ground silica fume, unground metakaolin, and ground metakaolin separately in different replacement proportions. Ternary blended mixes were prepared using ceramic powder in 4%, 9%, and 14% and with silica fume in a constant level of 1% percentage. All the cast specimens were compared against the control concrete. A deeper comparative analysis was also made by comparing the performance of specimens made with unground mineral admixtures with that of ground mineral admixtures. Various parameters such as resistance against water absorption, percentage of voids, and sorptivity characteristics were studied. It was observed that increasing the fineness helps fill up the pores, thereby improving the resistance to permeation action.

Copyright: © 2022 B. Karthikeyan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10657331
  • Publié(e) le:
    17.02.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine