0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bolt Loosening and Preload Loss Detection Technology Based on Machine Vision

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3897
DOI: 10.3390/buildings14123897
Abstrait:

Steel bridges often experience bolt loosening and even fatigue fracture due to fatigue load, forced vibration, and other factors during operation, affecting structural safety. This study proposes a high-precision bolt key point positioning and recognition method based on deep learning to address the high cost, low efficiency, and poor safety of current bolt loosening identification methods. Additionally, a bolt loosening angle recognition method is proposed based on digital image processing technology. Using image recognition data, the angle-preload curve is revised. The established correlation between loosening angle and pretension for commonly utilized high-strength bolts provides a benchmark for identifying loosening angles. This finding lays a theoretical foundation for defining effective detection intervals in future bolt loosening recognition systems. Consequently, it enhances the system’s ability to deliver timely warnings, facilitating swift manual inspections and repairs.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810606
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine