Bolt Loosening and Preload Loss Detection Technology Based on Machine Vision
Auteur(s): |
Zhiqiang Shang
Xi Qin Zejun Zhang Hongtao Jiang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 décembre 2024, n. 12, v. 14 |
Page(s): | 3897 |
DOI: | 10.3390/buildings14123897 |
Abstrait: |
Steel bridges often experience bolt loosening and even fatigue fracture due to fatigue load, forced vibration, and other factors during operation, affecting structural safety. This study proposes a high-precision bolt key point positioning and recognition method based on deep learning to address the high cost, low efficiency, and poor safety of current bolt loosening identification methods. Additionally, a bolt loosening angle recognition method is proposed based on digital image processing technology. Using image recognition data, the angle-preload curve is revised. The established correlation between loosening angle and pretension for commonly utilized high-strength bolts provides a benchmark for identifying loosening angles. This finding lays a theoretical foundation for defining effective detection intervals in future bolt loosening recognition systems. Consequently, it enhances the system’s ability to deliver timely warnings, facilitating swift manual inspections and repairs. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.31 MB
- Informations
sur cette fiche - Reference-ID
10810606 - Publié(e) le:
17.01.2025 - Modifié(e) le:
17.01.2025