Axial Compression Prediction and GUI Design for CCFST Column Using Machine Learning and Shapley Additive Explanation
Auteur(s): |
Xuerui Liu
Yanqi Wu Yisong Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 24 avril 2022, n. 5, v. 12 |
Page(s): | 698 |
DOI: | 10.3390/buildings12050698 |
Abstrait: |
Axial bearing capacity is the key index of circular concrete-filled steel tubes (CCFST). A hybrid PSO-ANN model consisting of an artificial neural network (ANN) optimized with particle swarm algorithm (PSO) was proposed to reliably and accurately predict the axial bearing capacity in this paper. The predictive performance of the model was evaluated and compared with the EC4 code and original ANN based on a dataset of 227 experiments, and a graphical user interface (GUI) was developed to achieve the automatic output of the results. The influence of each design parameter on the bearing capacity was analyzed and quantified using the Shapley additive explanation (SHAP) method and sensitivity analysis. The results show that the prediction performance of the PSO-ANN model is superior, and can be recommended as a candidate for the prediction of axial compression bearing capacity of the CCFST column in terms of performance indices. Shapley additive explanation-based parameter analysis indicated that the diameter and thickness of the steel tube are the most two important parameters to the bearing capacity; in particular, the fluctuation of the diameter under the stochastic environment leads to the variation of the axial compression bearing capacity beyond the diameter itself. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.98 MB
- Informations
sur cette fiche - Reference-ID
10679516 - Publié(e) le:
18.06.2022 - Modifié(e) le:
10.11.2022