0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Axial Compression Prediction and GUI Design for CCFST Column Using Machine Learning and Shapley Additive Explanation

Autor(en):
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 5, v. 12
Seite(n): 698
DOI: 10.3390/buildings12050698
Abstrakt:

Axial bearing capacity is the key index of circular concrete-filled steel tubes (CCFST). A hybrid PSO-ANN model consisting of an artificial neural network (ANN) optimized with particle swarm algorithm (PSO) was proposed to reliably and accurately predict the axial bearing capacity in this paper. The predictive performance of the model was evaluated and compared with the EC4 code and original ANN based on a dataset of 227 experiments, and a graphical user interface (GUI) was developed to achieve the automatic output of the results. The influence of each design parameter on the bearing capacity was analyzed and quantified using the Shapley additive explanation (SHAP) method and sensitivity analysis. The results show that the prediction performance of the PSO-ANN model is superior, and can be recommended as a candidate for the prediction of axial compression bearing capacity of the CCFST column in terms of performance indices. Shapley additive explanation-based parameter analysis indicated that the diameter and thickness of the steel tube are the most two important parameters to the bearing capacity; in particular, the fluctuation of the diameter under the stochastic environment leads to the variation of the axial compression bearing capacity beyond the diameter itself.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10679516
  • Veröffentlicht am:
    18.06.2022
  • Geändert am:
    10.11.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine