An application of finite element model updating for damage assessment of a two-story reinforced concrete building and comparison with lidar
Auteur(s): |
Mingming Song
Seyedsina Yousefianmoghadam Mohammad-Ebrahim Mohammadi Babak Moaveni Andreas Stavridis Richard L. Wood |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Structural Health Monitoring, octobre 2017, n. 5, v. 17 |
Page(s): | 1129-1150 |
DOI: | 10.1177/1475921717737970 |
Abstrait: |
This article investigates the performance of finite element model updating to identify the induced damage in a two-story reinforced concrete masonry-infilled building using vibration data as well as lidar (light detection and ranging) scans. The building, located in El Centro, California, was severely damaged due to the 2010 El Mayor–Cucapah (Baja California, Mexico) Earthquake, and it was planned to be demolished following a number of ambient and forced vibration tests. The forced vibration tests were performed using an eccentric mass shaker. During the testing sequence, damage was induced to the building by removing four exterior walls. The modal parameters of the structure are estimated using the ambient vibration and forced vibration measurements at the reference state and damaged state. Lidar data are also used to detect surface defects and quantify the temporal changes of surface defects caused by the wall removal and forced vibration tests. Based on site inspections, geometry measurements, and material test data, two initial finite element models are built, namely the un-tuned initial model and the tuned initial model. The tuned initial model implements stiffness reduction factors to account for the observed damage in the building at its reference state while the un-tuned model does not. Two sets of reference models are calibrated to represent the structure at the reference state using the un-tuned and tuned initial models. The reference models are then updated to fit the measured data at the damaged state of the building with damage being estimated as the loss of stiffness in updating substructures. The estimated damage is compared to the nominal value of induced damage and surface defects detected by lidar scans. The analysis of the results indicates that the un-tuned and tuned initial models provide similar updated models and damage identification results which are in good agreement with the nominal values of damage and lidar detection results. |
- Informations
sur cette fiche - Reference-ID
10562116 - Publié(e) le:
11.02.2021 - Modifié(e) le:
19.02.2021