The Application of a BiGRU Model with Transformer-Based Error Correction in Deformation Prediction for Bridge SHM
Auteur(s): |
Xu Wang
Guilin Xie Youjia Zhang Haiming Liu Lei Zhou Wentao Liu Yang Gao |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 février 2025, n. 4, v. 15 |
Page(s): | 542 |
DOI: | 10.3390/buildings15040542 |
Abstrait: |
Accurate deformation prediction is crucial for ensuring the safety and longevity of bridges. However, the complex fluctuations of deformation pose a challenge to achieving this goal. To improve the prediction accuracy, a bridge deformation prediction method based on a bidirectional gated recurrent unit (BiGRU) neural network and error correction is proposed. Firstly, the BiGRU model is employed to predict deformation data, which aims to enhance the modeling capability of the GRU network for time-series data through its bidirectional structure. Then, to extract the valuable information concealed in the error, a transformer model is introduced to rectify the error sequence. Finally, the preliminary and error prediction results are integrated to yield high-precision deformation prediction results. Two deformation datasets collected from an actual bridge health monitoring system are utilized as examples to verify the effectiveness of the proposed method. The results show that the proposed method outperforms the comparison model in terms of prediction accuracy, robustness, and generalization ability, with the predicted deformation results being closer to the actual results. Notably, the error-corrected model exhibits significantly improved evaluation metrics compared to the single model. The research findings herein offer a scientific foundation for bridges’ early safety warning and health monitoring. Additionally, they hold significant relevance for developing time-series prediction models based on deep learning. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.05 MB
- Informations
sur cette fiche - Reference-ID
10820558 - Publié(e) le:
11.03.2025 - Modifié(e) le:
11.03.2025