0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

The Application of a BiGRU Model with Transformer-Based Error Correction in Deformation Prediction for Bridge SHM

Autor(en):
ORCID





Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 4, v. 15
Seite(n): 542
DOI: 10.3390/buildings15040542
Abstrakt:

Accurate deformation prediction is crucial for ensuring the safety and longevity of bridges. However, the complex fluctuations of deformation pose a challenge to achieving this goal. To improve the prediction accuracy, a bridge deformation prediction method based on a bidirectional gated recurrent unit (BiGRU) neural network and error correction is proposed. Firstly, the BiGRU model is employed to predict deformation data, which aims to enhance the modeling capability of the GRU network for time-series data through its bidirectional structure. Then, to extract the valuable information concealed in the error, a transformer model is introduced to rectify the error sequence. Finally, the preliminary and error prediction results are integrated to yield high-precision deformation prediction results. Two deformation datasets collected from an actual bridge health monitoring system are utilized as examples to verify the effectiveness of the proposed method. The results show that the proposed method outperforms the comparison model in terms of prediction accuracy, robustness, and generalization ability, with the predicted deformation results being closer to the actual results. Notably, the error-corrected model exhibits significantly improved evaluation metrics compared to the single model. The research findings herein offer a scientific foundation for bridges’ early safety warning and health monitoring. Additionally, they hold significant relevance for developing time-series prediction models based on deep learning.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10820558
  • Veröffentlicht am:
    11.03.2025
  • Geändert am:
    11.03.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine