Analyzing the early structural build-up of accelerated cement pastes
Auteur(s): |
Tobias Dorn
Tamino Hirsch Dietmar Stephan |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Materials and Structures, 23 février 2021, n. 2, v. 54 |
DOI: | 10.1617/s11527-021-01662-5 |
Abstrait: |
Extrusion-based additive manufacturing imposes high requirements on the material stability right after the extrusion. Therefore, a thorough understanding of the chemical reactions that determine the early reduction in processability is necessary. Accelerators are especially considered here, which have a major influence on the early reaction. This study contributes to these issues by analyzing the influence of 0.1 wt% TEA (triethanolamine) and 2.0 wt% Ca(NO3)2on the hydration of two CEM I 52.5 R. The hydration was analyzed by isothermal heat flow calorimetry and in-situ X-ray diffraction. Vicat needle penetration, a penetrometer of own design, and ultrasonic P-wave velocity development were used to monitor the early change in workability. The obtained results indicate that ettringite formation is the main factor influencing workability during the first 60 min of hydration. Afterwards, the influence of ettringite is exceeded by the formation of C–S–H. Ca(NO3)2was shown to enhance C–S–H formation and had no significant effect on the workability during the first 60 min of hydration while rapidly decreasing workability during the induction period. TEA was shown to increase brownmillerite dissolution and ettringite formation and, consequently, promote the workability loss during the initial hydration period. The time of initial and final setting determined by the Vicat needle test depended mainly on the formation of C–S–H phases. |
Copyright: | © The Author(s) 2021 |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.81 MB
- Informations
sur cette fiche - Reference-ID
10601247 - Publié(e) le:
17.04.2021 - Modifié(e) le:
02.06.2021