Airfield Infrastructure Management Using Network-Level Optimization and Stochastic Duration Modeling
Auteur(s): |
Mohamadhossein Noruzoliaee
Bo Zou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, mars 2019, n. 1, v. 4 |
Page(s): | 2 |
DOI: | 10.3390/infrastructures4010002 |
Abstrait: |
This paper proposes a facility-specific modeling approach to plan maintenance and rehabilitation (M&R) activities on a network of airport runway pavement facilities. The objective of the modeling approach is to minimize system M&R cost while recommending M&R activities for each runway pavement facility over a planning horizon. To do so, pavement condition forecast is derived from estimating stochastic duration models which capture the inherent uncertainty and dynamics in pavement deterioration and impacts of exogenous factors. Building on the pavement condition forecast, a network optimization-based M&R planning framework is developed which accounts for the interdependence of M&R activities among facilities as reflected in (1) the requirement for aggregate pavement performance and (2) simultaneous implementation of a major M&R action on connected facilities. The budget constraint is also respected. The M&R planning framework with the stochastic duration model-based pavement condition forecast is applied to Chicago O’Hare International Airport. It is found that the proposed approach leads to much reduced M&R cost compared to the state-of-the-practice which does not consider the interdependence of M&R activities among different pavement facilities. On the other hand, accounting for the simultaneous implementation of a major M&R action on connected facilities would substantially increase M&R cost. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.7 MB
- Informations
sur cette fiche - Reference-ID
10723316 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023