Airfield Infrastructure Management Using Network-Level Optimization and Stochastic Duration Modeling
Autor(en): |
Mohamadhossein Noruzoliaee
Bo Zou |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, März 2019, n. 1, v. 4 |
Seite(n): | 2 |
DOI: | 10.3390/infrastructures4010002 |
Abstrakt: |
This paper proposes a facility-specific modeling approach to plan maintenance and rehabilitation (M&R) activities on a network of airport runway pavement facilities. The objective of the modeling approach is to minimize system M&R cost while recommending M&R activities for each runway pavement facility over a planning horizon. To do so, pavement condition forecast is derived from estimating stochastic duration models which capture the inherent uncertainty and dynamics in pavement deterioration and impacts of exogenous factors. Building on the pavement condition forecast, a network optimization-based M&R planning framework is developed which accounts for the interdependence of M&R activities among facilities as reflected in (1) the requirement for aggregate pavement performance and (2) simultaneous implementation of a major M&R action on connected facilities. The budget constraint is also respected. The M&R planning framework with the stochastic duration model-based pavement condition forecast is applied to Chicago O’Hare International Airport. It is found that the proposed approach leads to much reduced M&R cost compared to the state-of-the-practice which does not consider the interdependence of M&R activities among different pavement facilities. On the other hand, accounting for the simultaneous implementation of a major M&R action on connected facilities would substantially increase M&R cost. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.7 MB
- Über diese
Datenseite - Reference-ID
10723316 - Veröffentlicht am:
22.04.2023 - Geändert am:
10.05.2023