A Comprehensive Study on Unsupervised Transfer Learning for Structural Health Monitoring of Bridges Using Joint Distribution Adaptation
Author(s): |
Laura Souza
Marcus Omori Yano Samuel da Silva Eloi Figueiredo |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, 3 August 2024, n. 8, v. 9 |
Page(s): | 131 |
DOI: | 10.3390/infrastructures9080131 |
Abstract: |
Bridges are crucial transportation infrastructures with significant socioeconomic impacts, necessitating continuous assessment to ensure safe operation. However, the vast number of bridges and the technical and financial challenges of maintaining permanent monitoring systems in every single bridge make the implementation of structural health monitoring (SHM) difficult for authorities. Unsupervised transfer learning, which reuses experimental or numerical data from well-known bridges to detect damage on other bridges with limited monitoring response data, has emerged as a promising solution. This solution can reduce SHM costs while ensuring the safety of bridges with similar characteristics. This paper investigates the limitations, challenges, and opportunities of unsupervised transfer learning via domain adaptation across datasets from various prestressed concrete bridges under distinct operational and environmental conditions. A feature-based transfer learning approach is proposed, where the joint distribution adaptation method is used for domain adaptation. As the main advantage, this study leverages the generalization of SHM for damage detection in prestressed concrete bridges with limited long-term monitoring data. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.55 MB
- About this
data sheet - Reference-ID
10798237 - Published on:
01/09/2024 - Last updated on:
01/09/2024