A Comprehensive Study on Unsupervised Transfer Learning for Structural Health Monitoring of Bridges Using Joint Distribution Adaptation
Autor(en): |
Laura Souza
Marcus Omori Yano Samuel da Silva Eloi Figueiredo |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 3 August 2024, n. 8, v. 9 |
Seite(n): | 131 |
DOI: | 10.3390/infrastructures9080131 |
Abstrakt: |
Bridges are crucial transportation infrastructures with significant socioeconomic impacts, necessitating continuous assessment to ensure safe operation. However, the vast number of bridges and the technical and financial challenges of maintaining permanent monitoring systems in every single bridge make the implementation of structural health monitoring (SHM) difficult for authorities. Unsupervised transfer learning, which reuses experimental or numerical data from well-known bridges to detect damage on other bridges with limited monitoring response data, has emerged as a promising solution. This solution can reduce SHM costs while ensuring the safety of bridges with similar characteristics. This paper investigates the limitations, challenges, and opportunities of unsupervised transfer learning via domain adaptation across datasets from various prestressed concrete bridges under distinct operational and environmental conditions. A feature-based transfer learning approach is proposed, where the joint distribution adaptation method is used for domain adaptation. As the main advantage, this study leverages the generalization of SHM for damage detection in prestressed concrete bridges with limited long-term monitoring data. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
5.55 MB
- Über diese
Datenseite - Reference-ID
10798237 - Veröffentlicht am:
01.09.2024 - Geändert am:
01.09.2024