0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Surrogate Modelling For Fatigue Damage of Wind-Turbine Blades Using Polynomial Chaos Expansions And Non-Negative Matrix Factorization

 Surrogate Modelling For Fatigue Damage of Wind-Turbine Blades Using Polynomial Chaos Expansions And Non-Negative Matrix Factorization
Auteur(s): , ,
Présenté pendant IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017, publié dans , pp. 809-816
DOI: 10.2749/vancouver.2017.0809
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.29 MB

A computational approach for the estimation of fatigue degradation of composite wind turbine blades by means of time domain aero-servo-elastic simulations is proposed. Wind turbine blades are subje...
Lire plus

Détails bibliographiques

Auteur(s): (Abstract)


Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017
Publié dans:
Page(s): 809-816 Nombre total de pages (du PDF): 8
Page(s): 809-816
Nombre total de pages (du PDF): 8
Année: 2017
DOI: 10.2749/vancouver.2017.0809
Abstrait:

A computational approach for the estimation of fatigue degradation of composite wind turbine blades by means of time domain aero-servo-elastic simulations is proposed. Wind turbine blades are subjected throughout their lifetime to highly stochastic loading. Fatigue damage of the composite reinforcement of the wind turbine blades has been identified early on in the wind turbine design practice as a factor driving design. A simple fatigue accumulation model is utilized for the spar cap reinforcement of a wind-turbine blade. Non-Negative Matrix Factorization (NMF) for the damage accumulation random field is used for dimensionality reduction. An approximate computationally efficient model, relying on Polynomial Chaos Expansion (PCE) of the damage state with respect to probabilistically modelled mean wind and turbulence intensity is derived. The framework is exemplified in a case-study of a 1.5MW wind turbine.

Mots-clé:
éolienne