0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Probabilistic Capacity Model for Concrete-Filled Steel Tubes

 Probabilistic Capacity Model for Concrete-Filled Steel Tubes
Auteur(s): , , , ,
Présenté pendant IABSE Symposium: Long Span Bridges, Istanbul, Turkey, 26-28 April 2023, publié dans , pp. 269-276
DOI: 10.2749/istanbul.2023.0269
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.53 MB

Concrete-filled steel tubular (CFST) columns are increasingly used around the world due to their significant structural and economic advantages. Although considerable research and several experimen...
Lire plus

Détails bibliographiques

Auteur(s): (College of Civil Engineering, Fuzhou University Fuzhou, China)
(Department of Civil, Construction-Architecture and Environmental Engineering, University of L’Aquila L’Aquila, Italy)
(College of Civil Engineering, Fuzhou University Fuzhou, China)
(Department of Structural and Geotechnical Engineering, Sapienza University of Rome Rome, Italy)
(Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign Urbana, Illinois, USA)
(College of Civil Engineering, Fuzhou University Fuzhou, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Long Span Bridges, Istanbul, Turkey, 26-28 April 2023
Publié dans:
Page(s): 269-276 Nombre total de pages (du PDF): 8
Page(s): 269-276
Nombre total de pages (du PDF): 8
Année: 2023
DOI: 10.2749/istanbul.2023.0269
Abstrait:

Concrete-filled steel tubular (CFST) columns are increasingly used around the world due to their significant structural and economic advantages. Although considerable research and several experimental tests have been carried out on CFST columns, there are no mechanics-based probabilistic models of their axial capacity. The present research proposes a mechanicsbased probabilistic capacity model for the assessment of the ultimate axial capacity of CFST columns. The accuracy of the numerical predictions obtained with the proposed formulation is compared with that of existing capacity equations already in use within technical standards or available in the literature.