0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predicting strains in embedded reinforcement based on surface deformation obtained by digital image correlation technique

 Predicting strains in embedded reinforcement based on surface deformation obtained by digital image correlation technique
Auteur(s): , ORCID, ,
Présenté pendant IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021, publié dans , pp. 425-434
DOI: 10.2749/ghent.2021.0425
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.19 MB

This study is carried out to assess the applicability of using a digital image correlation (DIC) system in structural inspection, leading to deploy innovative instruments for strain/stress estimati...
Lire plus

Détails bibliographiques

Auteur(s): (Luleå University of Technology, Luleå, Sweden)
ORCID (Luleå University of Technology, Luleå, Sweden; SINTEF Narvik AS, Narvik, 8517, Norway)
(Luleå University of Technology, Luleå, Sweden)
(Luleå University of Technology, Luleå, Sweden)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021
Publié dans:
Page(s): 425-434 Nombre total de pages (du PDF): 10
Page(s): 425-434
Nombre total de pages (du PDF): 10
DOI: 10.2749/ghent.2021.0425
Abstrait:

This study is carried out to assess the applicability of using a digital image correlation (DIC) system in structural inspection, leading to deploy innovative instruments for strain/stress estimation along embedded rebars. A semi-empirical equation is proposed to predict the strain in embedded rebars as a function of surface strain in RC members. The proposed equation is validated by monitoring the surface strain in ten concrete tensile members, which are instrumented by strain gauges along the internal steel rebar. One advantage with this proposed model is the possibility to predict the local strain along the rebar, unlike previous models that only monitored average strain on the rebar. The results show the feasibility of strain prediction in embedded reinforcement using surface strain obtained by DIC.

Copyright: © 2021 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.