0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predicting Fractures in Reinforcing Steel Bars: A Low Cycle Fatigue CNN Approach

 Predicting Fractures in Reinforcing Steel Bars: A Low Cycle Fatigue CNN Approach
Auteur(s): ,
Présenté pendant IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024, publié dans , pp. 587-595
DOI: 10.2749/manchester.2024.0587
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.09 MB

Resilience is enhanced by machine-learning-based structural health monitoring (ML-SHM). ML-SHM minimizes delays in recovery after events, offering continuous monitoring for improved resourcefulness...
Lire plus

Détails bibliographiques

Auteur(s): (Civil and Environmental Engineering Department, Rowan University, Glassboro, New Jersey, 08028)
(Civil and Environmental Engineering Department, Rowan University, Glassboro, New Jersey, 08028)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024
Publié dans:
Page(s): 587-595 Nombre total de pages (du PDF): 9
Page(s): 587-595
Nombre total de pages (du PDF): 9
DOI: 10.2749/manchester.2024.0587
Abstrait:

Resilience is enhanced by machine-learning-based structural health monitoring (ML-SHM). ML-SHM minimizes delays in recovery after events, offering continuous monitoring for improved resourcefulness. This paper discusses the use of convolution neural networks (CNNs) for SHM with time-series data from seismic events. Current ML approaches overlook the temporal nature of the data. The proposed ML-SHM approach involves converting time-series data into images using the Markov Transition Field (MTF), obtained from strain data collected during shake table tests, and utilizing these encoded images in training and testing CNN models. CNN models achieved impressive accuracy in training (100%) and testing (96.7%) using only 3 layers. By stacking eleven earthquake excitation representations through MTF images, particularly for low-cycle fatigue, this method shows promise in revolutionizing fracture estimation from strain data.