0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Physics-informed Gaussian process model for Euler-Bernoulli beam elements

 Physics-informed Gaussian process model for Euler-Bernoulli beam elements
Auteur(s): , , , ORCID
Présenté pendant IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022, publié dans , pp. 445-452
DOI: 10.2749/prague.2022.0445
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.13 MB

A physics-informed machine learning model, in the form of a multi-output Gaussian process, is formulated using the Euler-Bernoulli beam equation. Given appropriate datasets, the model can be used t...
Lire plus

Détails bibliographiques

Auteur(s): (Bauhaus-Universität Weimar, Weimar, Germany)
(Bauhaus-Universität Weimar, Weimar, Germany)
(Bauhaus-Universität Weimar, Weimar, Germany)
ORCID (Bauhaus-Universität Weimar, Weimar, Germany)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022
Publié dans:
Page(s): 445-452 Nombre total de pages (du PDF): 8
Page(s): 445-452
Nombre total de pages (du PDF): 8
DOI: 10.2749/prague.2022.0445
Abstrait:

A physics-informed machine learning model, in the form of a multi-output Gaussian process, is formulated using the Euler-Bernoulli beam equation. Given appropriate datasets, the model can be used to regress the analytical value of the structure’s bending stiffness, interpolate responses, and make probabilistic inferences on latent physical quantities. The developed model is applied on a numerically simulated cantilever beam, where the regressed bending stiffness is evaluated and the influence measurement noise on the prediction quality is investigated. Further, the regressed probabilistic stiffness distribution is used in a structural health monitoring context, where the Mahalanobis distance is employed to reason about the possible location and extent of damage in the structural system. To validate the developed framework, an experiment is conducted and measured heterogeneous datasets are used to update the assumed analytical structural model.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.