0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Performance Prediction of Concrete Elements in Bridge Substructures using Integrated Deterioration Method

 Performance Prediction of Concrete Elements in Bridge Substructures using Integrated Deterioration Method
Auteur(s): , , , ,
Présenté pendant 18th IABSE Congress: Innovative Infrastructures – Towards Human Urbanism, Seoul, Korea, 19-21 September 2012, publié dans , pp. 108-115
DOI: 10.2749/222137912805110240
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

The typical probabilistic deterioration model cannot guarantee a reliable long-term prediction for various situations of available condition data. To minimise this limitation, this paper presents a...
Lire plus

Détails bibliographiques

Auteur(s):




Médium: papier de conférence
Langue(s): anglais
Conférence: 18th IABSE Congress: Innovative Infrastructures – Towards Human Urbanism, Seoul, Korea, 19-21 September 2012
Publié dans:
Page(s): 108-115 Nombre total de pages (du PDF): 8
Page(s): 108-115
Nombre total de pages (du PDF): 8
DOI: 10.2749/222137912805110240
Abstrait:

The typical probabilistic deterioration model cannot guarantee a reliable long-term prediction for various situations of available condition data. To minimise this limitation, this paper presents an advanced integrated method using state-/time-based model to build a reliable transition probability for prediction long-term performance of bridge elements. A selection process is developed in this method to automatically select a suitable prediction approach for a given situations of condition data. Furthermore, a Backward Prediction Model (BPM) is employed to effectively prediction the bridge performance when the inspection data are insufficient. In this study, a benchmark example- concrete element in bridge substructures is selected to demonstrate that the BPM in conjunction with time-based model can improve the reliability of long-term prediction.