0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multilevel Constrained Optimal Structural Design of Reinforced Concrete Lateral System for Tall Buildings

 Multilevel Constrained Optimal Structural Design of Reinforced Concrete Lateral System for Tall Buildings
Auteur(s): ,
Présenté pendant IABSE Conference: Bridges and Structures Sustainability - Seeking Intelligent Solutions, Guangzhou, China, 8-11 May 2016, publié dans , pp. 867-872
DOI: 10.2749/222137816819259301
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.27 MB

A multilevel constrained optimal structural design method is developed in this paper for reinforced concrete lateral system for tall buildings. The design constraints of reinforced concrete members...
Lire plus

Détails bibliographiques

Auteur(s):

Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Conference: Bridges and Structures Sustainability - Seeking Intelligent Solutions, Guangzhou, China, 8-11 May 2016
Publié dans:
Page(s): 867-872 Nombre total de pages (du PDF): 6
Page(s): 867-872
Nombre total de pages (du PDF): 6
Année: 2016
DOI: 10.2749/222137816819259301
Abstrait:

A multilevel constrained optimal structural design method is developed in this paper for reinforced concrete lateral system for tall buildings. The design constraints of reinforced concrete members under different performance requirements are categorized into three levels, namely component level, assembly level and global level. The component level constraints, for example the member strength and service ability requirements, are those design constraints related to certain structural component. The assembly and global design constraints, for example the frame shear ratio and storey drift ratio, are commonly related to the design variables of several or all structural components. The multilevel constrained optimal structural design method applies a bottom-up methodology to uncouple the design constraints from component level to global level, and the effectiveness and adaptability of this optimal structural design method are illustrated by a real frame-core tall building project.