0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Multi-fidelity modelling for structural identification

 Multi-fidelity modelling for structural identification
Auteur(s): ,
Présenté pendant IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019, publié dans , pp. 1092-1099
DOI: 10.2749/guimaraes.2019.1092
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.69 MB

Asset-management decision-making is often improved by obtaining a better understanding structural behaviour through monitoring, which can then help avoid unnecessary repair, retrofit and replacemen...
Lire plus

Détails bibliographiques

Auteur(s): (Swiss Federal Institute of Technology, Lausanne, Switzerland; ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore)
(Swiss Federal Institute of Technology, Lausanne, Switzerland; ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019
Publié dans:
Page(s): 1092-1099 Nombre total de pages (du PDF): 8
Page(s): 1092-1099
Nombre total de pages (du PDF): 8
DOI: 10.2749/guimaraes.2019.1092
Abstrait:

Asset-management decision-making is often improved by obtaining a better understanding structural behaviour through monitoring, which can then help avoid unnecessary repair, retrofit and replacement of existing infrastructure. Interpretation of monitoring data in the presence of biased and systematic uncertainties may require computationally time-consuming numerical models to approximate real structural behaviour. These models could be replaced by less time-consuming machine learning-based surrogate models. When and how this should be done is the subject of current research. In this paper, the use of surrogate models in a multi-fidelity framework for structural identification of a full-scale bridge is presented. The effects of varying degrees of fidelity are studied in a transparent manner within a structural-identification framework. The use of models with multiple fidelities helps obtain accurate model updating results in less time compared with using only one high-fidelity model class for simulations.