0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Methodology of a predictive tool for corrosion prediction and risk- based maintenance in reinforced concrete structures

 Methodology of a predictive tool for corrosion prediction and risk- based maintenance in reinforced concrete structures
Auteur(s): , , , ,
Présenté pendant IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024, publié dans , pp. 775-782
DOI: 10.2749/manchester.2024.0775
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.1 MB

This paper contributes to the understanding and prediction of the corrosion condition of steel in reinforced concrete structures while proposing solutions to reduce both financial and ecological co...
Lire plus

Détails bibliographiques

Auteur(s): (CERIB, Epernon, France)
(CERIB, Epernon, France)
(CERIB, Epernon, France)
(LMDC, Toulouse, France)
(LMDC, Toulouse, France)
(Arcadis, Paris, France)
(Arcadis, Paris, France)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024
Publié dans:
Page(s): 775-782 Nombre total de pages (du PDF): 8
Page(s): 775-782
Nombre total de pages (du PDF): 8
DOI: 10.2749/manchester.2024.0775
Abstrait:

This paper contributes to the understanding and prediction of the corrosion condition of steel in reinforced concrete structures while proposing solutions to reduce both financial and ecological costs associated with their maintenance. It presents a comprehensive tool and methodology for predicting maintenance and repair in maritime structures and bridges that are exposed to carbonation and chloride ingress. The tool incorporates various resources, including numerical and analytic models, as well as an experimental results database based on existing literature. This database facilitates the conversion of composition parameters into input parameters for the durability models. The application of this tool is demonstrated on a maritime structure in this paper. Deterministic and probabilistic predictions using the Monte Carlo method are utilized to determine the optimal time for inspection and maintenance operations.