0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Measure the Application of Pre-Stressed CFRP Laminates Using Deep Learning for Computer Vision

 Measure the Application of Pre-Stressed CFRP Laminates Using Deep Learning for Computer Vision
Auteur(s): ORCID, , ORCID
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1412-1419
DOI: 10.2749/nanjing.2022.1412
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

Strengthening of reinforced concrete (RC) structures with pre-stressed Carbon Fiber Reinforced Polymer (CFRP) laminates is a well-known application. The development of vision-based approaches for m...
Lire plus

Détails bibliographiques

Auteur(s): ORCID (CERIS, IST-ID, ULisboa, Lisboa, Portugal)
(CERIS, IST-ID, ULisboa, Lisboa, Portugal)
ORCID (CERIS, IST, ULisboa, Lisboa, Portugal)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1412-1419 Nombre total de pages (du PDF): 8
Page(s): 1412-1419
Nombre total de pages (du PDF): 8
DOI: 10.2749/nanjing.2022.1412
Abstrait:

Strengthening of reinforced concrete (RC) structures with pre-stressed Carbon Fiber Reinforced Polymer (CFRP) laminates is a well-known application. The development of vision-based approaches for monitoring the strain imposed during the pre-stress application, with the required precision and accuracy, represents an important contribution for the state of the art. A new system, named Strain- Vision, was design and developed tacking into account three main modules: (i) development of a customized high precision strain monitoring CFRP laminates (hpsm-CFRP); (ii) definition of a set-up for image acquisition during pre-stress application; (iii) design of computer vision architecture based on deep learning to measure the strain. The pre-processing of data, to be analysed with an architecture previously training, is herein discussed, aiming to improve the quality and performance of the system without the need for large datasets, usually required in deep learning applications.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.