0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Machine learning-based failure mode identification of RCSPSW

 Machine learning-based failure mode identification of RCSPSW
Auteur(s): , , ,
Présenté pendant IABSE Congress: Resilient technologies for sustainable infrastructure, Christchurch, New Zealand, 3-5 February 2021, publié dans , pp. 1150-1157
DOI: 10.2749/christchurch.2021.1150
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.23 MB

Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mo...
Lire plus

Détails bibliographiques

Auteur(s): (Nanjing University of Science and Technology, Nanjing, Jiangsu Province, China)
(Nanjing University of Science and Technology, Nanjing, Jiangsu Province, China)
(China Academy of Building Research, Beijing, China)
(Yango University, Fuzhou, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Resilient technologies for sustainable infrastructure, Christchurch, New Zealand, 3-5 February 2021
Publié dans:
Page(s): 1150-1157 Nombre total de pages (du PDF): 8
Page(s): 1150-1157
Nombre total de pages (du PDF): 8
DOI: 10.2749/christchurch.2021.1150
Abstrait:

Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF),K-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.