Large-scale fatigue tests on prestressed concrete beams
|
Détails bibliographiques
Auteur(s): |
Dennis Birkner
(Technische Universität Dresden, Institute of Concrete Structures, Germany)
Steffen Marx (Technische Universität Dresden, Institute of Concrete Structures, Germany) |
||||
---|---|---|---|---|---|
Médium: | papier de conférence | ||||
Langue(s): | anglais | ||||
Conférence: | IABSE Congress: Resilient technologies for sustainable infrastructure, Christchurch, New Zealand, 3-5 February 2021 | ||||
Publié dans: | IABSE Congress Christchurch 2020 | ||||
|
|||||
Page(s): | 943-951 | ||||
Nombre total de pages (du PDF): | 9 | ||||
DOI: | 10.2749/christchurch.2021.0943 | ||||
Abstrait: |
For a better estimation of the fatigue lifetime of real structures, tests on large-scale beam specimens are more suitable than on common cylindrical specimens, since effects like local stiffness changes and stress redistributions can be reproduced more realistically. This article presents an experimental setup for large-scale concrete beams subjected to fatigue loading. Additionally, the fatigue tests are simulated with a numerical model. The results of the numerical analysis show a successively increasing damage propagating from the edge into the inner part of the cross-section in the mid span with increasing number of cycles. This results in stress redistributions which extend the lifetime of the structure. The evaluation of the experimental investigation on the first beam specimen shows a larger stiffness degradation at the upper edge than in the centre of the cross-section as well as increasing strains at this location. This matches the expected effects from the numerical analysis. |
||||
Mots-clé: |
béton
|