0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Framework for Automated Bridge Inspections and Assessments with Visual Sensing Technology

A Framework for Automated Bridge Inspections and Assessments with Visual Sensing Technology
Auteur(s): , ,
Présenté pendant IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022, publié dans , pp. 330-337
DOI: 10.2749/prague.2022.0330
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.14 MB

The use of visual sensing technology and autonomous robotic platforms provides significant capabilities to inspect, document and assess bridges for both routine inspection and after significant nat...
Lire plus

Détails bibliographiques

Auteur(s): (Simpson Gumpertz & Heger, Waltham, MA, USA)
(Hacettepe University, Ankara, Turkey)
(Northeastern University, Boston, MA, USA)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022
Publié dans:
Page(s): 330-337 Nombre total de pages (du PDF): 8
Page(s): 330-337
Nombre total de pages (du PDF): 8
DOI: 10.2749/prague.2022.0330
Abstrait:

The use of visual sensing technology and autonomous robotic platforms provides significant capabilities to inspect, document and assess bridges for both routine inspection and after significant natural or manmade events. To advance these capabilities, this study presents an end-to-end framework for automated conversion of raw visual sensor data into meaningful information that is directly related to bridges. Three categories of information are considered: 1) object information that includes object identity, shapes, and spatial relationships; 2) surface damage information that includes both small deformations (e.g., cracks) and large deformations (e.g., bent members, alignment issues); 3) as-built bridge models that include solid geometry models and volumetric finite element meshes. With a focus on steel girder bridges, robust algorithms have been developed and used to validate the proposed framework based on real-world data collected in situ.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.