0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Enhancing Bridge Structural Health Monitoring Through Acoustic Sensing: A Comprehensive Approach to Traffic Analysis and Incident Detection

 Enhancing Bridge Structural Health Monitoring Through Acoustic Sensing: A Comprehensive Approach to Traffic Analysis and Incident Detection
Auteur(s): , , ,
Présenté pendant IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, publié dans , pp. 1460-1467
DOI: 10.2749/sanjose.2024.1460
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.69 MB

This paper introduces a pioneering approach to bridge structural health monitoring through the development of a unified microphone assembly. This system enhances the detection and localization of v...
Lire plus

Détails bibliographiques

Auteur(s): (Shanghai Qi Zhi Institute, Shanghai, China Tongji University, Shanghai, China)
(Tongji University, Shanghai, China)
(Tongji University, Shanghai, China)
(Tongji University, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Publié dans:
Page(s): 1460-1467 Nombre total de pages (du PDF): 8
Page(s): 1460-1467
Nombre total de pages (du PDF): 8
DOI: 10.2749/sanjose.2024.1460
Abstrait:

This paper introduces a pioneering approach to bridge structural health monitoring through the development of a unified microphone assembly. This system enhances the detection and localization of vehicles on bridges by utilizing generalized cross-correlation and Time Difference of Arrival (TDOA) analysis. A novel combination of audio features is processed using Convolutional Neural Networks (CNN) and Vision Transformers (ViT) to classify vehicle types while detecting critical incidents like crashes and skidding. The proposed integrated system processes the Acoustic Emissions into a comprehensive database that records each vehicle's timestamp, lane occupancy, movement direction, vehicle type, and detected incidents. The effectiveness of this system not only demonstrates its potential to improve bridge safety but also sets a new benchmark for applying acoustic technologies in structural health monitoring.