0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Enhancement in Indian Bridge Management System using analytics within BIM data model

 Enhancement in Indian Bridge Management System using analytics within BIM data model
Auteur(s): ,
Présenté pendant IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022, publié dans , pp. 903-910
DOI: 10.2749/prague.2022.0903
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.25 MB

Indian Bridge Management System and its enhanced version Unified Bridge Management System (UBMS) like all BMS rely on successive visual observations to define status ratings of bridge components wh...
Lire plus

Détails bibliographiques

Auteur(s): (IDDC Engineers Pvt. Ltd., Mumbai, India)
(IDDC Engineers Pvt. Ltd., Mumbai, India)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022
Publié dans:
Page(s): 903-910 Nombre total de pages (du PDF): 8
Page(s): 903-910
Nombre total de pages (du PDF): 8
DOI: 10.2749/prague.2022.0903
Abstrait:

Indian Bridge Management System and its enhanced version Unified Bridge Management System (UBMS) like all BMS rely on successive visual observations to define status ratings of bridge components which are used for remedial interventions and critical management decisions. These systems are devoid of location details of distress and are reactive in regard to deterioration and risk models as they rely on such changes in ratings for interventions. Incorporating photogrammetric geospatial 3D drawing/model will bring critical hereto missing data to enhance effectiveness and efficiency of IBMS/UBMS. This paper is aimed to present a concept for adding geospatial details to IBMS/UBMS. This incorporation enables the usage of AI and machine learning for improved decision making and reporting. Analysis provides a predictive tool to estimate future distress and the progression of deterioration process and the impact it can have on the future performance. Inclusion of SHM data will also be possible.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.