0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effect of the Valley Slope on the Seismic Response of Deepwater Rigid-frame Bridge

 Effect of the Valley Slope on the Seismic Response of Deepwater Rigid-frame Bridge
Auteur(s): , ,
Présenté pendant IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018, publié dans , pp. S23-101
DOI: 10.2749/nantes.2018.s23-101
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.29 MB

This study employs three-dimensional finite element model based on potential-based fluid elements to investigate the effect of the valley slope on the seismic response of piers of a deepwater rigid-...
Lire plus

Détails bibliographiques

Auteur(s): (Southwest Jiaotong University, Chengdu, China)
(Southwest Jiaotong University, Chengdu, China)
(Southwest Jiaotong University, Chengdu, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Symposium: Tomorrow’s Megastructures, Nantes, France, 19-21 September 2018
Publié dans:
Page(s): S23-101 Nombre total de pages (du PDF): 8
Page(s): S23-101
Nombre total de pages (du PDF): 8
DOI: 10.2749/nantes.2018.s23-101
Abstrait:

This study employs three-dimensional finite element model based on potential-based fluid elements to investigate the effect of the valley slope on the seismic response of piers of a deepwater rigid- frame bridge. The valley slope is treated as a rigid wall boundary in the numerical model. Seismic responses of an example deepwater rigid-frame bridge under Wenchuan Earthquake are determined through time-domain fluid-structure interaction (FSI) analyses. The hydrodynamic pressure within water domain around the piers are obtained as well. Numerical results show that the seismic responses of the main pier of the deepwater rigid-frame bridge increase with increasing of slope angle and decrease with increasing of slope distance. The effect of valley slope on the seismic responses of the side pier and the deformation of rubber bearing is of little consequence. The location of peaks of hydrodynamic pressure is considerably changed due to the increasing of slope angle. These findings demonstrate that the effect of valley slope can be significant and should not be neglected in the seismic analyses of deepwater bridges.