0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Detection of Concrete Structural Surface Cracks Based on VQ-VAE-2

 Detection of Concrete Structural Surface Cracks Based on VQ-VAE-2
Auteur(s): ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1209-1215
DOI: 10.2749/nanjing.2022.1209
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.21 MB

The deep learning models can detect surface cracks of concrete structures efficiently, but training sets which include a great number of crack pictures generally are relied on when training the dee...
Lire plus

Détails bibliographiques

Auteur(s): (Department of Bridge Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering, Tongji University, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1209-1215 Nombre total de pages (du PDF): 7
Page(s): 1209-1215
Nombre total de pages (du PDF): 7
DOI: 10.2749/nanjing.2022.1209
Abstrait:

The deep learning models can detect surface cracks of concrete structures efficiently, but training sets which include a great number of crack pictures generally are relied on when training the deep learning models. This paper presents a detection method based on VQ-VAE-2, an unsupervised learning model, which requires no cracks when trained. Firstly, a VQ-VAE-2 model is trained on a training set which only contain pictures of normal concrete structural surfaces. The VQ-VAE-2 model is expected to produce low reconstruction error for pictures of normal concrete structural surfaces and high reconstruction error for ones of concrete structural surface cracks. Then the reconstruction error of test set is computed by the VQ-VAE-2 as the judgment criteria. Lastly, the model is evaluated by precision, recall, F1 and accuracy. The result shows the method based on VQ-VAE-2 can achieve the crack detection without crack samples.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.