0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Denoising of structural health monitoring data: method and coding

 Denoising of structural health monitoring data: method and coding
Auteur(s): , , , , ORCID
Présenté pendant IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021, publié dans , pp. 504-510
DOI: 10.2749/ghent.2021.0504
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.19 MB

Numerous denoising approaches have already been presented to handle the noise in measured data of structural health monitoring systems. However, the performances and features of these existing meth...
Lire plus

Détails bibliographiques

Auteur(s): (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
(Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
(Research Institute of Highway Ministry of Transport, Beijing 100088, China)
(Research Institute of Highway Ministry of Transport, Beijing 100088, China)
ORCID (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22-24 September 2021
Publié dans:
Page(s): 504-510 Nombre total de pages (du PDF): 7
Page(s): 504-510
Nombre total de pages (du PDF): 7
DOI: 10.2749/ghent.2021.0504
Abstrait:

Numerous denoising approaches have already been presented to handle the noise in measured data of structural health monitoring systems. However, the performances and features of these existing methods applied in real data-set are not clear enough yet, where the noise is not known in advance. Therefore, based on the measured structural response data from a tied-arch bridge in China, six common data denoising methods are selected for a comparative study. The denoising effects are evaluated based on spectrums. Conclusions on the applicable situations and robustness of involved methods are given. A corresponding program is also developed. This study can provide references for applying the denoising methods in real structural health monitoring system data-set.

Copyright: © 2021 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.