0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Bridge Performance Prediction Approach Based on Improved Particle Filter and Structural Health Monitoring Data

 Bridge Performance Prediction Approach Based on Improved Particle Filter and Structural Health Monitoring Data
Auteur(s): , ORCID
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1329-1337
DOI: 10.2749/nanjing.2022.1329
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.15 MB

To reasonably and dynamically predict the performance of the in-service bridges, this paper proposes an adaptive-variance Bayesian-dynamic-linear-model Improved Particle Filter (IPF) prediction app...
Lire plus

Détails bibliographiques

Auteur(s): (Tongji University, Shanghai, CHN)
ORCID (Tongji University, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1329-1337 Nombre total de pages (du PDF): 9
Page(s): 1329-1337
Nombre total de pages (du PDF): 9
DOI: 10.2749/nanjing.2022.1329
Abstrait:

To reasonably and dynamically predict the performance of the in-service bridges, this paper proposes an adaptive-variance Bayesian-dynamic-linear-model Improved Particle Filter (IPF) prediction approach to reliability for bridge structures with sensor measurements. First of all, the adaptive-variance dynamic linear model, which provides state equation, monitored equation and initial state information for the PF, is built with the measurements of bridge sensors. The corresponding theoretical and numerical recursive processes are carried on with the Bayes method. Then the built adaptive-variance Bayesian-dynamic linear model is applied to provide the dynamic importance distribution functions for PF, which can solve the sample degradation problem of the traditional particle filter. Proceed to the next step, using the IPF prediction approach and FOSM method, structural reliability at critical points is dynamically predicted based on the sensor data. Finally, an actual bridge is provided to illustrate the feasibility and application of the proposed model and method.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.