0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Aerodynamic Parameter Identification and Flutter Performance Prediction of Closed Box Girder Based on Machine Learning

 Aerodynamic Parameter Identification and Flutter Performance Prediction of Closed Box Girder Based on Machine Learning
Auteur(s): ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1161-1170
DOI: 10.2749/nanjing.2022.1161
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.16 MB

A bridge wind resistance database has been built based on the wind tunnel testing results of 20 long-span bridges. The artificial intelligence models for identifying aerostatic coefficients and flu...
Lire plus

Détails bibliographiques

Auteur(s): (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China)
(State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1161-1170 Nombre total de pages (du PDF): 10
Page(s): 1161-1170
Nombre total de pages (du PDF): 10
DOI: 10.2749/nanjing.2022.1161
Abstrait:

A bridge wind resistance database has been built based on the wind tunnel testing results of 20 long-span bridges. The artificial intelligence models for identifying aerostatic coefficients and flutter derivatives of close box girders are trained and developed via machine learning methods, including error back propagation neural network based on Levenberg-Marquardt algorithm and gradient boosting decision tree. The identification of the aerostatic coefficients can be achieved with high accuracy. For flutter derivatives, the model can also explore the underlying distribution of dataset. In this way, the present research work can make the identification of aerodynamic parameters separated from tedious wind tunnel test and complex numerical simulation to some extent. It can also provide a convenient and feasible option for expanding data sets of aerodynamic parameters. In addition, it can help determine the appropriate shape of the box girder cross-section in preliminary design stage of long-span bridge and provide the necessary reference for the aerodynamic shape optimization by modifying local geometric features of the cross-section to evaluate the influence of the aerodynamic shape on flutter performance.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.