- Small-sample data-driven lightweight convolutional neural network for asphalt pavement defect identification. Dans: Case Studies in Construction Materials, v. 21 (décembre 2024). (2024):
- CNN-based network with multi-scale context feature and attention mechanism for automatic pavement crack segmentation. Dans: Automation in Construction, v. 164 (août 2024). (2024):
- Study on the correlation between spatial variability of asphalt mixture material parameters and fracture performance. Dans: Case Studies in Construction Materials, v. 20 (juillet 2024). (2024):
- Modified fractional-Zener model—Numerical application in modeling the behavior of asphalt mixtures. Dans: Construction and Building Materials, v. 388 (juillet 2023). (2023):
- Lightweight convolutional neural network driven by small data for asphalt pavement crack segmentation. Dans: Automation in Construction, v. 158 (février 2024). (2024):
- Application of a stochastic damage model to predict the variability of creep behavior for asphalt mixtures. Dans: Case Studies in Construction Materials, v. 18 (juillet 2023). (2023):
- Experimental and analytical methods for evaluating the high temperature viscoelastic properties of fine aggregate matrix. Dans: Materials and Structures, v. 55, n. 7 (5 août 2022). (2022):