0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Rouainia, M. / Muir Wood, D. (2000): A kinematic hardening constitutive model for natural clays with loss of structure. Dans: Géotechnique, v. 50, n. 2 (avril 2000).

    https://doi.org/10.1680/geot.2000.50.2.153

  2. GONZáLEZ, N. A. / Rouainia, M. / Arroyo, M. / Gens, A. (2012): Analysis of tunnel excavation in London Clay incorporating soil structure. Dans: Géotechnique, v. 62, n. 12 (décembre 2012).

    https://doi.org/10.1680/geot.11.p.030

  3. Sargent, P. / Hughes, P. N. / Rouainia, M. (2016): A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing. Dans: Soils and Foundations, v. 56, n. 6 (décembre 2016).

    https://doi.org/10.1016/j.sandf.2016.11.007

  4. Rouainia, M. / Davies, O. / O'Brien, T. / Glendinning, S. (2009): Numerical modelling of climate effects on slope stability. Dans: Proceedings of the Institution of Civil Engineers - Engineering Sustainability, v. 162, n. 2 (juin 2009).

    https://doi.org/10.1680/ensu.2009.162.2.81

  5. Charlton, T. S. / Rouainia, M. / Dawson, R. J. (2018): Control Variate Approach for Efficient Stochastic Finite-Element Analysis of Geotechnical Problems. Dans: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, v. 4, n. 3 (septembre 2018).

    https://doi.org/10.1061/ajrua6.0000983

  6. Charlton, T. S. / Rouainia, M. (2021): Cyclic performance of a monopile in spatially variable clay using an advanced constitutive model. Dans: Soil Dynamics and Earthquake Engineering, v. 140 (janvier 2021).

    https://doi.org/10.1016/j.soildyn.2020.106437

  7. Sargent, P. / Rouainia, M. / Diambra, A. / Nash, D. / Hughes, P. N. (2020): Small to large strain mechanical behaviour of an alluvium stabilised with low carbon secondary minerals. Dans: Construction and Building Materials, v. 232 (janvier 2020).

    https://doi.org/10.1016/j.conbuildmat.2019.117174

  8. Barari, A. / Bagheri, M. / Rouainia, M. / Ibsen, L. B. (2017): Deformation mechanisms for offshore monopile foundations accounting for cyclic mobility effects. Dans: Soil Dynamics and Earthquake Engineering, v. 97 (juin 2017).

    https://doi.org/10.1016/j.soildyn.2017.03.008

  9. Alyami, M. / Rouainia, M. / Wilkinson, S. M. (2009): Numerical analysis of deformation behaviour of quay walls under earthquake loading. Dans: Soil Dynamics and Earthquake Engineering, v. 29, n. 3 (mars 2009).

    https://doi.org/10.1016/j.soildyn.2008.06.004

  10. Peng, J.-R. / Rouainia, M. / Clarke, B. G. (2010): Finite element analysis of laterally loaded fin piles. Dans: Computers & Structures, v. 88, n. 21-22 (novembre 2010).

    https://doi.org/10.1016/j.compstruc.2010.07.002

  11. Charlton, T. S. / Rouainia, M. (2017): A probabilistic approach to the ultimate capacity of skirted foundations in spatially variable clay. Dans: Structural Safety, v. 65 (mars 2017).

    https://doi.org/10.1016/j.strusafe.2016.05.002

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine