0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

S. T. G. Raghukanth ORCID

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Yedulla, Jyothi / Sriwastav, Ravi Kanth / Raghukanth, S. T. G. (2025): Non-parametric ground motion model for displacement response spectra and Fling for Himalayan region using machine learning. Dans: Computers & Structures, v. 307 (janvier 2025).

    https://doi.org/10.1016/j.compstruc.2024.107626

  2. NagaTejasri, M. / Raghukanth, S. T. G. / Mittal, Himanshu (2024): Simulations of Ground Motions for M w 7.9 Nepal Earthquake. Dans: Journal of Earthquake Engineering, v. 28, n. 16 (septembre 2024).

    https://doi.org/10.1080/13632469.2024.2406529

  3. Sriwastav, Ravi Kanth / Yedulla, Jyothi / Raghukanth, S. T. G. (2024): A non-parametric model of ground motion parameters for shallow crustal earthquakes in Europe. Dans: Soil Dynamics and Earthquake Engineering, v. 186 (novembre 2024).

    https://doi.org/10.1016/j.soildyn.2024.108923

  4. Basu, Jahnabi / Raghukanth, S. T. G. (2024): A prolegomenon to Design Input Energy Spectra for the Himalayan region. Dans: Soil Dynamics and Earthquake Engineering, v. 181 (juin 2024).

    https://doi.org/10.1016/j.soildyn.2024.108681

  5. Sreenath, Vemula / Basu, Jahnabi / Raghukanth, S. T. G. (2023): Ground motion models for regions with limited data: Data‐driven approach. Dans: Earthquake Engineering and Structural Dynamics, v. 53, n. 3 (décembre 2023).

    https://doi.org/10.1002/eqe.4075

  6. Meenakshi, Yellapragada / Sreenath, Vemula / Raghukanth, S. T. G. (2023): Ground motion models for Fourier amplitude spectra and response spectra using Machine learning techniques. Dans: Earthquake Engineering and Structural Dynamics, v. 53, n. 2 (novembre 2023).

    https://doi.org/10.1002/eqe.4036

  7. Meenakshi, Yellapragada / Podili, Bhargavi / Raghukanth, S. T. G. (2024): Design energy spectra for Peninsular India: A preliminary step towards energy-based design in India. Dans: Soil Dynamics and Earthquake Engineering, v. 177 (février 2024).

    https://doi.org/10.1016/j.soildyn.2023.108358

  8. Sreenath, Vemula / Podili, Bhargavi / Raghukanth, S. T. G. (2023): A hybrid non‐parametric ground motion model for shallow crustal earthquakes in Europe. Dans: Earthquake Engineering and Structural Dynamics, v. 52, n. 8 (mars 2023).

    https://doi.org/10.1002/eqe.3845

  9. Podili, Bhargavi / Raghukanth, S. T. G. (2023): Alternative regional ground motion models for Western Himalayas. Dans: Soil Dynamics and Earthquake Engineering, v. 168 (mai 2023).

    https://doi.org/10.1016/j.soildyn.2023.107805

  10. Vemula, Sreenath / Kp, Sreejaya / Raghukanth, S. T. G. (2022): Neural Network-Based Subduction Ground Motion Model and Its Application to New Zealand and the Andaman and Nicobar Islands. Dans: Journal of Earthquake Engineering, v. 27, n. 10 (septembre 2022).

    https://doi.org/10.1080/13632469.2022.2121333

  11. Sreejaya, K. P. / Raghukanth, S. T. G. / Gupta, I. D. / Murty, C. V. R. / Srinagesh, D. (2022): Seismic hazard map of India and neighbouring regions. Dans: Soil Dynamics and Earthquake Engineering, v. 163 (décembre 2022).

    https://doi.org/10.1016/j.soildyn.2022.107505

  12. Sreejaya, K. P. / Podili, Bhargavi / Raghukanth, S. T. G. (2022): Hazard consistent vertical design spectra for active regions of India. Dans: Soil Dynamics and Earthquake Engineering, v. 161 (octobre 2022).

    https://doi.org/10.1016/j.soildyn.2022.107395

  13. Sangeetha, S. / Raghukanth, S. T. G. (2022): Broadband ground motion simulations for Northeast India. Dans: Soil Dynamics and Earthquake Engineering, v. 154 (mars 2022).

    https://doi.org/10.1016/j.soildyn.2021.107120

  14. Vemula, Sreenath / Yellapragada, Meenakshi / Podili, Bhargavi / Raghukanth, S. T. G. / Ponnalagu, Alagappan (2021): Ground motion intensity measures for New Zealand. Dans: Soil Dynamics and Earthquake Engineering, v. 150 (novembre 2021).

    https://doi.org/10.1016/j.soildyn.2021.106928

  15. Jayalakshmi, S. / Dhanya, J. / Raghukanth, S. T. G. / Mai, P. M. (2021): Hybrid broadband ground motion simulations in the Indo-Gangetic basin for great Himalayan earthquake scenarios. Dans: Bulletin of Earthquake Engineering, v. 19, n. 9 (mai 2021).

    https://doi.org/10.1007/s10518-021-01094-0

  16. Lekshmy, P. R. / Raghukanth, S. T. G. (2021): A hybrid genetic algorithm-neural network model for power spectral density compatible ground motion prediction. Dans: Soil Dynamics and Earthquake Engineering, v. 142 (mars 2021).

    https://doi.org/10.1016/j.soildyn.2020.106528

  17. Dhanya, J. / Raghukanth, S. T. G. (2021): Probabilistic Fling Hazard Map of India and Adjoined Regions. Dans: Journal of Earthquake Engineering, v. 26, n. 9 (mai 2021).

    https://doi.org/10.1080/13632469.2020.1838969

  18. Dhanya, J. / Muthuganeisan, Prabhu / Raghukanth, S. T. G.: Probabilistic Fling Hazard Map for Himalayan Region. Présenté pendant: 5th International Conference on Civil Engineering and Urban Planning (CEUP2016), Xi'an, China, 23 – 26 August 2016.

    https://doi.org/10.1142/9789813225237_0053

  19. Dhanya, J. / Raghukanth, S. T. G. (2020): Non-linear Principal Component Analysis of Response Spectra. Dans: Journal of Earthquake Engineering, v. 26, n. 4 (août 2020).

    https://doi.org/10.1080/13632469.2020.1773352

  20. Jayalakshmi, S. / Dhanya, J. / Raghukanth, S. T. G. / Martin Mai, P. (2020): 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations. Dans: Soil Dynamics and Earthquake Engineering, v. 129 (février 2020).

    https://doi.org/10.1016/j.soildyn.2019.105923

  21. Bhargavi, Podili / Raghukanth, S. T. G. (2019): Rating damage potential of ground motion records. Dans: Earthquake Engineering and Engineering Vibration, v. 18, n. 2 (avril 2019).

    https://doi.org/10.1007/s11803-019-0501-1

  22. Gade, Maheshreddy / Raghukanth, S. T. G. (2018): Spatial variation of ground rotational motions in elastic half-space. Dans: Soil Dynamics and Earthquake Engineering, v. 107 (avril 2018).

    https://doi.org/10.1016/j.soildyn.2018.01.007

  23. Podili, Bhargavi / Raghukanth, S. T. G. (2019): Ground motion prediction equations for higher order parameters. Dans: Soil Dynamics and Earthquake Engineering, v. 118 (mars 2019).

    https://doi.org/10.1016/j.soildyn.2018.11.027

  24. Podili, Bhargavi / Raghukanth, S. T. G. (2019): Ground Motion Parameters for the 2011 Great Japan Tohoku Earthquake. Dans: Journal of Earthquake Engineering, v. 23, n. 4 ( 2019).

    https://doi.org/10.1080/13632469.2017.1342292

  25. Bagchi, Saikat / Raghukanth, S. T. G. (2019): Seismic Response of the Central Part of Indo-Gangetic Plain. Dans: Journal of Earthquake Engineering, v. 23, n. 2 ( 2019).

    https://doi.org/10.1080/13632469.2017.1323044

  26. Sangeetha, S. / Dhanya, J. / Raghukanth, S. T. G. (2018): 3D Crustal Velocity Model for Ground Motion Simulations in North-East India. Dans: Journal of Earthquake Engineering, v. 25, n. 3 (octobre 2018).

    https://doi.org/10.1080/13632469.2018.1520760

  27. Lekshmy, P. R. / Raghukanth, S. T. G. (2015): Maximum Possible Ground Motion for Linear Structures. Dans: Journal of Earthquake Engineering, v. 19, n. 6 ( 2015).

    https://doi.org/10.1080/13632469.2015.1023472

  28. Raghukanth, S. T. G. / Bhanu Teja, B. (2012): Ground Motion Simulation for January 26, 2001 Gujarat Earthquake by Spectral Finite Element Method. Dans: Journal of Earthquake Engineering, v. 16, n. 2 ( 2012).

    https://doi.org/10.1080/13632469.2011.634493

  29. Gade, Maheshreddy / Raghukanth, S. T. G. (2017): Simulation of strong ground motion for a MW 8.5 hypothetical earthquake in central seismic gap region, Himalaya. Dans: Bulletin of Earthquake Engineering, v. 15, n. 10 (mars 2017).

    https://doi.org/10.1007/s10518-017-0146-2

  30. Raghukanth, S. T. G. (2011): Seismicity parameters for important urban agglomerations in India. Dans: Bulletin of Earthquake Engineering, v. 9, n. 5 (avril 2011).

    https://doi.org/10.1007/s10518-011-9265-3

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine