-
Mróz, Z. / Norris, V. A. / Zienkiewicz, O. C. (1981): An anisotropic, critical state model for soils subject to cyclic loading. Dans: Géotechnique, v. 31, n. 4 (décembre 1981).
https://doi.org/10.1680/geot.1981.31.4.451
-
Mróz, Z. / Norris, V. A. / Zienkiewicz, O. C. (1979): Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Dans: Géotechnique, v. 29, n. 1 (mars 1979).
https://doi.org/10.1680/geot.1979.29.1.1
-
Mróz, Z. / Boukpeti, N. / Drescher, A. (2003): Constitutive Model for Static Liquefaction. Dans: International Journal of Geomechanics, v. 3, n. 2 (décembre 2003).
https://doi.org/10.1061/(asce)1532-3641(2003)3:2(133)
-
Olszak, W. / Mróz, Z. (1956): The method of inversion in the theory of plates. Dans: IABSE Publications, v. 16 ( 1956).
https://doi.org/10.5169/seals-15074
-
Lind, N. C. / Mróz, Z. (1973): A study of cyclic plasticity. Présenté pendant: IABSE Symposium: Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, Portugal, 1973.
https://doi.org/10.5169/seals-13740
-
Bojczuk, D. / Mróz, Z. (1999): Optimal topology and configuration design of trusses with stress and buckling constraints. Dans: Structural Optimization, v. 17, n. 2-3 (avril 1999).
https://doi.org/10.1007/s001580050033
-
Bojczuk, D. / Mróz, Z. (1999): Optimal topology and configuration design of trusses with stress and buckling constraints. Dans: Structural Optimization, v. 17, n. 2-3 (avril 1999).
https://doi.org/10.1007/bf01197710
-
Sergeyev, O. / Mróz, Z. (1998): Optimal joint positions and stiffness distribution for minimum mass frames with damping constraints. Dans: Structural Optimization, v. 16, n. 4 (décembre 1998).
https://doi.org/10.1007/bf01271430
-
Bojczuk, D. / Mróz, Z. (1998): On optimal design of supports in beam and frame structures. Dans: Structural Optimization, v. 16, n. 2-3 (octobre 1998).
https://doi.org/10.1007/bf01213999
-
Sergeyev, O. / Mróz, Z. (1998): Optimal joint positions and stiffness distribution for minimum mass frames with damping constraints. Dans: Structural Optimization, v. 16, n. 2-3 (octobre 1998).
https://doi.org/10.1007/s001580050024
-
Dems, K. / Mróz, Z. (1993): On shape sensitivity approaches in the numerical analysis of structures. Dans: Structural Optimization, v. 6, n. 4 (décembre 1993).
https://doi.org/10.1007/bf01743340
-
Siemaszko, A. / Mróz, Z. (1991): Sensitivity of plastic optimal structures to imperfections and non-linear geometrical effects. Dans: Structural Optimization, v. 3, n. 4 (décembre 1991).
https://doi.org/10.1007/bf01743278
-
Mróz, Z. / Lekszycki, T. (1981): Optimal support reaction in elastic frame structures. Dans: Computers & Structures, v. 14, n. 3-4 (janvier 1981).
https://doi.org/10.1016/0045-7949(81)90002-x
-
Sergeyev, O. / Mróz, Z. (2000): Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints. Dans: Computers & Structures, v. 75, n. 2 (mars 2000).
https://doi.org/10.1016/s0045-7949(99)00088-7
-
Moallemi, S. / Pietruszczak, S. / Mróz, Z. (2017): Deterministic size effect in concrete structures with account for chemo-mechanical loading. Dans: Computers & Structures, v. 182 (1 avril 2017).
https://doi.org/10.1016/j.compstruc.2016.10.003
-
Wilczynski, B. / Mróz, Z. (2007): Optimal design of machine components using notch correction and plasticity models. Dans: Computers & Structures, v. 85, n. 17-18 (septembre 2007).
https://doi.org/10.1016/j.compstruc.2006.08.092
-
Páczelt, I. / Mróz, Z. (2011): Numerical analysis of steady thermo-elastic wear regimes induced by translating and rotating punches. Dans: Computers & Structures, v. 89, n. 23-24 (décembre 2011).
https://doi.org/10.1016/j.compstruc.2011.06.001
-
Dems, K. / Mróz, Z. (2010): Damage identification using modal, static and thermographic analysis with additional control parameters. Dans: Computers & Structures, v. 88, n. 21-22 (novembre 2010).
https://doi.org/10.1016/j.compstruc.2010.07.005
-
Syroka-Korol, E. / Tejchman, J. / Mróz, Z. (2013): FE calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Dans: Engineering Structures, v. 48 (mars 2013).
https://doi.org/10.1016/j.engstruct.2012.09.013
-
Korol, E. / Tejchman, J. / Mróz, Z. (2017): Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement. Dans: Engineering Structures, v. 141 (juin 2017).
https://doi.org/10.1016/j.engstruct.2017.03.011
-
Syroka-Korol, E. / Tejchman, J. / Mróz, Z. (2015): FE investigations of the effect of fluctuating local tensile strength on coupled energetic–statistical size effect in concrete beams. Dans: Engineering Structures, v. 103 (novembre 2015).
https://doi.org/10.1016/j.engstruct.2015.09.011
-
Suchorzewski, J. / Korol, E. / Tejchman, J. / Mróz, Z. (2018): Experimental study of shear strength and failure mechanisms in RC beams scaled along height or length. Dans: Engineering Structures, v. 157 (février 2018).
https://doi.org/10.1016/j.engstruct.2017.12.003