0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Mussawar, Osama / Mayyas, Ahmad / Azar, Elie (2024): Energy storage enabling renewable energy communities: An urban context-aware approach and case study using agent-based modeling and optimization. Dans: Sustainable Cities and Society, v. 115 (novembre 2024).

    https://doi.org/10.1016/j.scs.2024.105813

  2. Jeksen, Janar / Mayyas, Ahmad / Azar, Elie (2024): Impact of uncertainty in building operation patterns and electric energy demand on the design and techno-economic performance of solar photovoltaic systems in different climates. Dans: Energy and Buildings, v. 319 (septembre 2024).

    https://doi.org/10.1016/j.enbuild.2024.114486

  3. Mussawar, Osama / Rajeevkumar Urs, Rahul / Mayyas, Ahmad / Azar, Elie (2023): Performance and prospects of urban energy communities conditioned by the built form and function: A systematic investigation using agent-based modeling. Dans: Sustainable Cities and Society, v. 99 (décembre 2023).

    https://doi.org/10.1016/j.scs.2023.104957

  4. Mussawar, Osama / Mayyas, Ahmad / Azar, Elie (2023): Built Form and Function as Determinants of Urban Energy Performance: An Integrated Agent-based Modeling Approach and Case Study. Dans: Sustainable Cities and Society, v. 96 (septembre 2023).

    https://doi.org/10.1016/j.scs.2023.104660

  5. Chadly, Assia / Rajeevkumar Urs, Rahul / Wei, Max / Maalouf, Maher / Mayyas, Ahmad (2023): Techno-economic assessment of energy storage systems in green buildings while considering demand uncertainty. Dans: Energy and Buildings, v. 291 (juillet 2023).

    https://doi.org/10.1016/j.enbuild.2023.113130

  6. Ali, Abdulrahim / Jayaraman, Raja / Mayyas, Ahmad / Alaifan, Bader / Azar, Elie (2023): Machine learning as a surrogate to building performance simulation: Predicting energy consumption under different operational settings. Dans: Energy and Buildings, v. 286 (mai 2023).

    https://doi.org/10.1016/j.enbuild.2023.112940

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine