- Post-earthquake inspection of high-speed railway viaducts with multi-scale task interaction deep learning strategy. Dans: Advances in Structural Engineering. :
- Enhancing concrete frost resistance prediction with an explainable neural network. Dans: Case Studies in Construction Materials, v. 21 (décembre 2024). (2024):
- Proposing an inherently interpretable machine learning model for shear strength prediction of reinforced concrete beams with stirrups. Dans: Case Studies in Construction Materials, v. 20 (juillet 2024). (2024):
- (2024): Component Identification and Depth Estimation for Structural Images Based on Multi-Scale Task Interaction Network. Dans: Buildings, v. 14, n. 4 (27 mars 2024).
- BO-Stacking: A novel shear strength prediction model of RC beams with stirrups based on Bayesian Optimization and model stacking. Dans: Structures, v. 58 (décembre 2023). (2023):
- Two-Stream Boundary-Aware Neural Network for Concrete Crack Segmentation and Quantification. Dans: Structural Control and Health Monitoring, v. 2023 (février 2023). (2023):
- A hybrid strategy of AutoML and SHAP for automated and explainable concrete strength prediction. Dans: Case Studies in Construction Materials, v. 19 (décembre 2023). (2023):
- Evaluation of mechanical properties and anisotropy of 3D printed concrete at different temperatures. Dans: Structures, v. 51 (mai 2023). (2023):
- Concrete compressive strength prediction using an explainable boosting machine model. Dans: Case Studies in Construction Materials, v. 18 (juillet 2023). (2023):
- (2023): Data-Driven Shear Strength Prediction of FRP-Reinforced Concrete Beams without Stirrups Based on Machine Learning Methods. Dans: Buildings, v. 13, n. 2 (14 février 2023).