0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Liu, Jian / Liu, Fangyu / Wang, Linbing (2024): Automated, economical, and environmentally-friendly asphalt mix design based on machine learning and multi-objective grey wolf optimization. Dans: Journal of Traffic and Transportation Engineering (English Edition), v. 11, n. 3 (juin 2024).

    https://doi.org/10.1016/j.jtte.2023.10.002

  2. Liu, Fangyu / Liu, Jian / Wang, Linbing / Al-Qadi, Imad L. (2024): Multiple-type distress detection in asphalt concrete pavement using infrared thermography and deep learning. Dans: Automation in Construction, v. 161 (mai 2024).

    https://doi.org/10.1016/j.autcon.2024.105355

  3. Liu, Fangyu / Ding, Wenqi / Qiao, Yafei / Wang, Linbing (2024): Transfer learning-based encoder-decoder model with visual explanations for infrastructure crack segmentation: New open database and comprehensive evaluation. Dans: Underground Space, v. 17 (août 2024).

    https://doi.org/10.1016/j.undsp.2023.09.012

  4. Liu, Jian / Liu, Fangyu / Wang, Zhen / Fanijo, Ebenezer O. / Wang, Linbing (2023): Involving prediction of dynamic modulus in asphalt mix design with machine learning and mechanical-empirical analysis. Dans: Construction and Building Materials, v. 407 (décembre 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.133610

  5. Chang, Jun / Zhang, Hong / Liu, Fangyu / Cui, Kai (2024): Exploring the mechanism of micro-nano bubble water in enhancing the mechanical properties of sulfoaluminate cement-based materials. Dans: Construction and Building Materials, v. 411 (janvier 2024).

    https://doi.org/10.1016/j.conbuildmat.2023.134400

  6. Liu, Fangyu / Li, Junlin / Wang, Linbing (2023): PI-LSTM: Physics-informed long short-term memory network for structural response modeling. Dans: Engineering Structures, v. 292 (octobre 2023).

    https://doi.org/10.1016/j.engstruct.2023.116500

  7. Liu, Fangyu / Liu, Jian / Wang, Linbing (2022): Asphalt pavement fatigue crack severity classification by infrared thermography and deep learning. Dans: Automation in Construction, v. 143 (novembre 2022).

    https://doi.org/10.1016/j.autcon.2022.104575

  8. Liu, Jian / Liu, Fangyu / Zheng, Chuanfeng / Fanijo, Ebenezer O. / Wang, Linbing (2022): Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning. Dans: Construction and Building Materials, v. 360 (décembre 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.129439

  9. Liu, Jian / Liu, Fangyu / Zheng, Chuanfeng / Zhou, Daodao / Wang, Linbing (2022): Optimizing asphalt mix design through predicting the rut depth of asphalt pavement using machine learning. Dans: Construction and Building Materials, v. 356 (novembre 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.129211

  10. Liu, Jian / Liu, Fangyu / Gong, Hongren / Fanijo, Ebenezer O. / Wang, Linbing (2022): Improving asphalt mix design by predicting alligator cracking and longitudinal cracking based on machine learning and dimensionality reduction techniques. Dans: Construction and Building Materials, v. 354 (novembre 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.129162

  11. Liu, Fangyu / Wang, Linbing (2022): UNet-based model for crack detection integrating visual explanations. Dans: Construction and Building Materials, v. 322 (mars 2022).

    https://doi.org/10.1016/j.conbuildmat.2021.126265

  12. Liu, Fangyu / Liu, Jian / Wang, Linbing (2022): Deep learning and infrared thermography for asphalt pavement crack severity classification. Dans: Automation in Construction, v. 140 (août 2022).

    https://doi.org/10.1016/j.autcon.2022.104383

  13. Liu, Fangyu / Ye, Zhoujing / Wang, Linbing (2022): Deep transfer learning-based vehicle classification by asphalt pavement vibration. Dans: Construction and Building Materials, v. 342 (août 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.127997

  14. Liu, Jian / Liu, Fangyu / Zheng, Chuanfeng / Zhou, Daodao / Wang, Linbing (2022): Optimizing asphalt mix design through predicting effective asphalt content and absorbed asphalt content using machine learning. Dans: Construction and Building Materials, v. 325 (mars 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.126607

  15. Liu, Fangyu / Ding, Wenqi / Qiao, Yafei / Wang, Linbing (2020): An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power. Dans: Frontiers of Structural and Civil Engineering, v. 14, n. 6 (août 2020).

    https://doi.org/10.1007/s11709-020-0712-6

  16. Liu, Fangyu / Ding, Wenqi / Qiao, Yafei (2020): Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Dans: Construction and Building Materials, v. 241 (avril 2020).

    https://doi.org/10.1016/j.conbuildmat.2020.118000

  17. Liu, Fangyu / Ding, Wenqi / Qiao, Yafei (2019): Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Dans: Construction and Building Materials, v. 228 (décembre 2019).

    https://doi.org/10.1016/j.conbuildmat.2019.116706

  18. Liu, Fangyu / Ding, Wenqi / Qiao, Yafei (2019): An experimental investigation on the integral waterproofing capacity of polypropylene fiber concrete with fly ash and slag powder. Dans: Construction and Building Materials, v. 212 (juillet 2019).

    https://doi.org/10.1016/j.conbuildmat.2019.04.027

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine