- Higher order interface conditions for piezoelectric spherical hollow composites: asymptotic approach and transfer matrix homogenization method. Dans: Composite Structures, v. 279 (janvier 2022). (2022):
- Cyclic behaviour modelling of GFRP adhesive connections by an imperfect soft interface model with damage evolution. Dans: Composite Structures, v. 279 (janvier 2022). (2022):
- Towards nonlinear imperfect interface models including micro-cracks and smooth roughness. Dans: Annals of Solid and Structural Mechanics, v. 9, n. 1-2 (octobre 2017). (2017):
- Modelling approaches of the in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. Dans: Composite Structures, v. 74, n. 3 (août 2006). (2006):
- Modelling of a GFRP adhesive connection by an imperfect soft interface model with initial damage. Dans: Composite Structures, v. 239 (mai 2020). (2020):
- An approach for modeling non-ageing linear viscoelastic composites with general periodicity. Dans: Composite Structures, v. 223 (septembre 2019). (2019):
- Analysis of effective elastic properties for shell with complex geometrical shapes. Dans: Composite Structures, v. 203 (novembre 2018). (2018):
- Asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers. Dans: Steel and Composite Structures, v. 4, n. 2 (avril 2004). (2004):
- Asymptotic analysis of some non-linear soft thin layers. Dans: Computers & Structures, v. 82, n. 23-26 (septembre 2004). (2004):
- Representation of plane elastostatics operators in daubechies wavelets. Dans: Computers & Structures, v. 60, n. 4 (juin 1996). (1996):
- An automatic multilevel refinement technique based on nested local meshes for nonlinear mechanics. Dans: Computers & Structures, v. 147 (15 janvier 2015). (2015):
- Wavelet-Galerkin method for periodic heterogeneous media. Dans: Computers & Structures, v. 61, n. 1 (août 1996). (1996):
- Multibody contact problem including friction in structure assembly. Dans: Computers & Structures, v. 43, n. 5 (juin 1992). (1992):
- Strategies involving the local defect correction multi-level refinement method for solving three-dimensional linear elastic problems. Dans: Computers & Structures, v. 130 (janvier 2014). (2014):