0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Zhang, Hong / He, Jiangxia / Jiang, Xiaogang / Gong, Yanfeng / Hu, Tianyu / Jiang, Tengjiao / Zhou, Jianting: Quantitative Characterization of Surface Defects on Bridge Cable based on Improved YOLACT++. Dans: Case Studies in Construction Materials.

    https://doi.org/10.1016/j.cscm.2024.e03953

  2. Chen, Mingyang / Xin, Jingzhou / Tang, Qizhi / Hu, Tianyu / Zhou, Yin / Zhou, Jianting (2024): Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP. Dans: Developments in the Built Environment, v. 20 (décembre 2024).

    https://doi.org/10.1016/j.dibe.2024.100569

  3. Hu, Tianyu / Zhang, Hong / Khodadadi, Nima / Taffese, Woubishet Zewdu / Nanni, Antonio (2024): Enhancing bond strength prediction at UHPC-NC interface: A data-driven approach with augmentation and explainability. Dans: Construction and Building Materials, v. 451 (novembre 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.138757

  4. Li, Houxuan / Zhang, Hong / Zhou, Jianting / Xia, Runchuan / Gong, Yanfeng / Hu, Tianyu (2024): Fatigue life prediction of corroded steel wires: An accurate and explainable data-driven approach. Dans: Construction and Building Materials, v. 450 (novembre 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.138637

  5. Cheng, Cheng / Taffese, Woubishet Zewdu / Hu, Tianyu (2024): Accurate Prediction of Punching Shear Strength of Steel Fiber-Reinforced Concrete Slabs: A Machine Learning Approach with Data Augmentation and Explainability. Dans: Buildings, v. 14, n. 5 (24 avril 2024).

    https://doi.org/10.3390/buildings14051223

  6. Li, Haolin / Yin, Xinsheng / Sha, Lirong / Yang, Dongdong / Hu, Tianyu (2023): Data-Driven Prediction Model for High-Strength Bolts in Composite Beams. Dans: Buildings, v. 13, n. 11 (26 octobre 2023).

    https://doi.org/10.3390/buildings13112769

  7. Yu, Yong / Hu, Tianyu (2023): Machine Learning Based Compressive Strength Prediction Model for CFRP-confined Columns. Dans: KSCE Journal of Civil Engineering, v. 28, n. 1 (1 décembre 2023).

    https://doi.org/10.1007/s12205-023-0827-0

  8. Hu, Tianyu / Zhang, Hong / Zhou, Jianting (2023): Machine learning-based model for recognizing the failure modes of FRP-strengthened RC beams in flexure. Dans: Case Studies in Construction Materials, v. 18 (juillet 2023).

    https://doi.org/10.1016/j.cscm.2023.e02076

  9. Li, Haolin / Yang, Dongdong / Hu, Tianyu (2023): Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Dans: Buildings, v. 13, n. 5 (27 avril 2023).

    https://doi.org/10.3390/buildings13051309

  10. Hu, Tianyu / Zhang, Hong / Zhou, Jianting (2023): Prediction of the Debonding Failure of Beams Strengthened with FRP through Machine Learning Models. Dans: Buildings, v. 13, n. 3 (26 février 2023).

    https://doi.org/10.3390/buildings13030608

  11. Li, Guibing / Hu, Tianyu / Shao, Yian / Bai, Dawei (2022): Data-driven model for predicting intermediate crack induced debonding of FRP-strengthened RC beams in flexure. Dans: Structures, v. 41 (juillet 2022).

    https://doi.org/10.1016/j.istruc.2022.05.023

  12. Hu, Tianyu / Li, Guibing (2022): Machine Learning-Based Model in Predicting the Plate-End Debonding of FRP-Strengthened RC Beams in Flexure. Dans: Advances in Civil Engineering, v. 2022 (janvier 2022).

    https://doi.org/10.1155/2022/6069871

  13. Li, Guibing / Hu, Tianyu / Bai, Dawei (2021): BP Neural Network Improved by Sparrow Search Algorithm in Predicting Debonding Strain of FRP-Strengthened RC Beams. Dans: Advances in Civil Engineering, v. 2021 (janvier 2021).

    https://doi.org/10.1155/2021/9979028

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine