0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

S. Gopalakrishnan

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Ramesh Babu, J. / Gopalakrishnan, S. (2024): Synergistic approach: Peridynamics and machine learning regression for efficient pitting corrosion simulation. Dans: Computers & Structures, v. 305 (décembre 2024).

    https://doi.org/10.1016/j.compstruc.2024.107588

  2. Saini, Rahul / Gopalakrishnan, S. (2023): Nonlocal boundaries and paradoxes in thermoelastic vibrations of functionally graded Non-Uniform cantilever nanobeams and annular nanoplates. Dans: Structures, v. 55 (septembre 2023).

    https://doi.org/10.1016/j.istruc.2023.06.095

  3. Abhijith, R. / Pradeep, K. / Shiddalingesh, B. / Gopalakrishnan, S. / Debabrata, M. (2022): Practical Guidance for Design of Steel Truss Footbridges. Présenté pendant: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022.

    https://doi.org/10.2749/prague.2022.1780

  4. Gopalakrishnan, S. / Wagle, Pradeep / Wagle, Gajanan (2022): Seismic Detailing of Single Span Bridges to AASHTO Standards for the State of Nevada, USA.. Présenté pendant: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022.

    https://doi.org/10.2749/prague.2022.1919

  5. Ali, Rizwaan / Mahapatra, D. R. / Gopalakrishnan, S. (2009): Time Domain Characteristics of Electrical Measures for a Piezoelectric Thin Film to Identify Defects in the Substrate. Dans: Structural Health Monitoring, v. 9, n. 2 (septembre 2009).

    https://doi.org/10.1177/1475921709352980

  6. Manjuprasad, M. / Gopalakrishnan, S. / Rao, K. Balaji (2003): Stochastic finite element based seismic analysis of framed structures with open-storey. Dans: Structural Engineering and Mechanics, v. 15, n. 4 (avril 2003).

    https://doi.org/10.12989/sem.2003.15.4.381

  7. Sasmal, Saptarshi / Ramanjaneyulu, K. / Srinivas, V. / Gopalakrishnan, S. (2004): Simplified computational methodology for analysis and studies on behaviour of incrementally launched continuous bridges. Dans: Structural Engineering and Mechanics, v. 17, n. 2 (février 2004).

    https://doi.org/10.12989/sem.2004.17.2.245

  8. Mitra, Mira / Gopalakrishnan, S. (2007): Wavelet spectral element for wave propagation studies in pressure loaded axisymmetric cylinders. Dans: Journal of Mechanics of Materials and Structures, v. 2, n. 4 (juin 2007).

    https://doi.org/10.2140/jomms.2007.2.753

  9. Mitra, Mira / Gopalakrishnan, S. / Ruzzene, Massimo / Apetre, Nicole / Hanagud, S. (2008): Perturbation technique for wave propagation analysis in a notched beam using wavelet spectral element modeling. Dans: Journal of Mechanics of Materials and Structures, v. 3, n. 4 (juin 2008).

    https://doi.org/10.2140/jomms.2008.3.659

  10. Apetre, Nicole / Ruzzene, Massimo / Hanagud, Sathyanaraya / Gopalakrishnan, S. (2008): A wave-based damage index for the analysis of the filtered response of damaged beams. Dans: Journal of Mechanics of Materials and Structures, v. 3, n. 9 (novembre 2008).

    https://doi.org/10.2140/jomms.2008.3.1605

  11. Ajith, V. / Gopalakrishnan, S. (2010): Spectral element approach to wave propagation in uncertain beam structures. Dans: Journal of Mechanics of Materials and Structures, v. 5, n. 4 (novembre 2010).

    https://doi.org/10.2140/jomms.2010.5.637

  12. Ishaquddin, Md. / Gopalakrishnan, S. (2019): Weak form quadrature elements for non-classical Kirchhoff plate theory. Dans: Annals of Solid and Structural Mechanics, v. 12, n. 1-2 (décembre 2019).

    https://doi.org/10.1007/s12356-020-00061-9

  13. Mutnuri, V. S. / Gopalakrishnan, S. (2019): On causality of wave motion in nonlocal theories of elasticity: a Kramers–Kronig relations study. Dans: Annals of Solid and Structural Mechanics, v. 12, n. 1-2 (décembre 2019).

    https://doi.org/10.1007/s12356-020-00056-6

  14. Mahapatra, D. Roy / Gopalakrishnan, S. (2003): A spectral finite element model for analysis of axial–flexural–shear coupled wave propagation in laminated composite beams. Dans: Composite Structures, v. 59, n. 1 (janvier 2003).

    https://doi.org/10.1016/s0263-8223(02)00228-3

  15. Murthy, M. V. V. S. / Mahapatra, D. Roy / Badarinarayana, K. / Gopalakrishnan, S. (2005): A refined higher order finite element for asymmetric composite beams. Dans: Composite Structures, v. 67, n. 1 (janvier 2005).

    https://doi.org/10.1016/j.compstruct.2004.01.005

  16. Mitra, Mira / Gopalakrishnan, S. (2006): Wavelet based spectral finite element for analysis of coupled wave propagation in higher order composite beams. Dans: Composite Structures, v. 73, n. 3 (juin 2006).

    https://doi.org/10.1016/j.compstruct.2005.01.038

  17. Munian, Rajendra Kumar / Mahapatra, D. Roy / Gopalakrishnan, S. (2020): Ultrasonic guided wave scattering due to delamination in curved composite structures. Dans: Composite Structures, v. 239 (mai 2020).

    https://doi.org/10.1016/j.compstruct.2020.111987

  18. Murthy, M. V. V. S. / Renji, K. / Gopalakrishnan, S. (2015): A spectral element for wave propagation in honeycomb sandwich construction considering core flexibility. Dans: Composite Structures, v. 127 (septembre 2015).

    https://doi.org/10.1016/j.compstruct.2015.02.074

  19. Samaratunga, Dulip / Jha, Ratneshwar / Gopalakrishnan, S. (2015): Wave propagation analysis in adhesively bonded composite joints using the wavelet spectral finite element method. Dans: Composite Structures, v. 122 (avril 2015).

    https://doi.org/10.1016/j.compstruct.2014.11.053

  20. Samaratunga, Dulip / Jha, Ratneshwar / Gopalakrishnan, S. (2014): Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Dans: Composite Structures, v. 108 (février 2014).

    https://doi.org/10.1016/j.compstruct.2013.09.027

  21. Prasanna Kumar, T. J. / Narendar, S. / Gopalakrishnan, S. (2013): Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics. Dans: Composite Structures, v. 100 (juin 2013).

    https://doi.org/10.1016/j.compstruct.2012.12.039

  22. Narendar, S. / Mahapatra, D. Roy / Gopalakrishnan, S. (2011): Ultrasonic wave characteristics of a monolayer graphene on silicon substrate. Dans: Composite Structures, v. 93, n. 8 (juillet 2011).

    https://doi.org/10.1016/j.compstruct.2011.02.023

  23. Ghosh, D. P. / Gopalakrishnan, S. (2007): A superconvergent finite element for composite beams with embedded magnetostrictive patches. Dans: Composite Structures, v. 79, n. 3 (juillet 2007).

    https://doi.org/10.1016/j.compstruct.2006.01.007

  24. Shivashankar, P. / Gopalakrishnan, S. (2020): Review on the use of piezoelectric materials for active vibration, noise, and flow control. Dans: Smart Materials and Structures, v. 29, n. 5 (27 mars 2020).

    https://doi.org/10.1088/1361-665x/ab7541

  25. Omkar, S. N. / Mudigere, Dheevatsa / Naik, G. Narayana / Gopalakrishnan, S. (2008): Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures. Dans: Computers & Structures, v. 86, n. 1-2 (janvier 2008).

    https://doi.org/10.1016/j.compstruc.2007.06.004

  26. Mukherjee, Sushovan / Scarpa, Fabrizio / Gopalakrishnan, S. (2016): Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core. Dans: Smart Materials and Structures, v. 25, n. 5 (mai 2016).

    https://doi.org/10.1088/0964-1726/25/5/054011

  27. Mitra, Mira / Gopalakrishnan, S. (2006): Wave propagation analysis in carbon nanotube embedded composite using wavelet based spectral finite elements. Dans: Smart Materials and Structures, v. 15, n. 1 (février 2006).

    https://doi.org/10.1088/0964-1726/15/1/039

  28. Mitra, Mira / Gopalakrishnan, S. / Bhat, M. Seetharama (2004): Vibration control in a composite box beam with piezoelectric actuators. Dans: Smart Materials and Structures, v. 13, n. 4 (août 2004).

    https://doi.org/10.1088/0964-1726/13/4/005

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine