- A review of peridynamic theory and nonlocal operators along with their computer implementations. Dans: Computers & Structures, v. 299 (août 2024). (2024):
- A new C0 continuous refined zigzag {1,2} finite element formulation for flexural and free vibration analyses of laminated composite beams. Dans: Composite Structures, v. 331 (mars 2024). (2024):
- Triangular C0 continuous finite elements based on refined zigzag theory {2,2} for free and forced vibration analyses of laminated plates. Dans: Composite Structures, v. 281 (février 2022). (2022):
- A peridynamic approach for modeling of two dimensional functionally graded plates. Dans: Composite Structures, v. 279 (janvier 2022). (2022):
- A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates. Dans: Composite Structures, v. 267 (juillet 2021). (2021):
- Stress analysis of laminated composite beams using refined zigzag theory and peridynamic differential operator. Dans: Composite Structures, v. 218 (juin 2019). (2019):