0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Zero Energy Building Approach in Design of Biohydrogen Research Centre

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: IOP Conference Series: Earth and Environmental Science, , n. 1, v. 1157
Page(s): 012007
DOI: 10.1088/1755-1315/1157/1/012007
Abstrait:

The utilisation of natural energy not only can reduce energy consumption in buildings but also can lower carbon emissions from the use of fossil fuel energy for building services. It is believed that with appropriate design and a good attitude of building users, the role of renewable energy in reducing carbon emissions will be maximised. This study proposed the implementation of Zero Energy Buildings (ZEB) concept in the initial stage of building design by considering buildings’ form and façade design in relation to daylighting, natural ventilation and thermal design of buildings, and photovoltaic placement to save energy and to produce electrical energy in the designed building. In this study, ZEB Concept is treated as a secondary consideration in producing the architectural design for Biohydrogen Research Centre. The primary design generator is based on the philosophy of chemical bonds form representing biohydrogen chemical bonds. For a successful implementation of the ZEB concept in the Biohydrogen Research Centre design, both active and passive means are utilised in the building design. For passive means, daylighting and natural ventilation strategies were applied. While for active means, photovoltaic panels were employed as the primary electrical energy generation. Energy demand scenarios were predicted and calculated by the amount of energy used for lighting, air conditioning, and other appliances in the building. The total area needed for photovoltaic installation was obtained by balancing the energy demand prediction with the expected energy generation. The resulting design showed a promising outcome where the building is expected to achieve surplus energy with a total of 845,595.5 kWh electricity per year.

Types d'ouvrages

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1755-1315/1157/1/012007.
  • Informations
    sur cette fiche
  • Reference-ID
    10780396
  • Publié(e) le:
    12.05.2024
  • Modifié(e) le:
    12.05.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine