0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Wind-Induced Response and Universal Equivalent Static Wind Loads of Single Layer Reticular Dome Shells

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 4, v. 14
Page(s): 1450008
DOI: 10.1142/s0219455414500084
Abstrait:

Wind pressure measurements were carried out for dome roofs with different rise–span ratios (f/L = 1/4,1/6,1/8) in a boundary wind tunnel. A parametric study was conducted to investigate the influences of wind loading and structural parameters on the wind-induced response and the universal equivalent static wind loads (ESWLs) of single-layer reticular dome shells, including the span, rise–span ratio, roof mass and the mean wind velocity. Results show that the rise–span ratio has a significant influence on the wind pressure distribution of the roof. High suction appears at the top of the roof with a larger rise–span ratio f/L = 1/4, and it appears at the top and leading edge when f/L is 1/6 or 1/8. Many vibration modes should be included to analyze the wind-induced response of dome roof structures, and this makes it very difficult to analyze the ESWL. The resonant response is larger than the background response. A method to calculate the universal ESWL for the building code is proposed for easy understanding by practicing engineers. Based on the distribution characteristics of the ESWL, simple fundamental vectors are constructed to recalculate the universal ESWL. This method is employed to divide the dome roof into four zones, and it also means that four fundamental vectors are used to evaluate the ESWL. Simplified expressions of universal ESWL in these four roof zones are proposed for the engineering design. All nodal displacements and structural member stresses under the universal ESWL agree well with actual peak responses.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455414500084.
  • Informations
    sur cette fiche
  • Reference-ID
    10352747
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine