Wildfire Susceptibility Mapping Using Five Boosting Machine Learning Algorithms: The Case Study of the Mediterranean Region of Turkey
Auteur(s): |
Sohaib K. M. Abujayyab
Moustafa Moufid Kassem Ashfak Ahmad Khan Raniyah Wazirali Mücahit Coşkun Enes Taşoğlu Ahmet Öztürk Ferhat Toprak |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-18 |
DOI: | 10.1155/2022/3959150 |
Abstrait: |
Forest fires caused by different environmental and human factors are responsible for the extensive destruction of natural and economic resources. Modern machine learning techniques have become popular in developing very accurate and precise susceptibility maps of various natural disasters to help reduce the occurrence of such calamities. The present study has applied and tested multiple algorithms to map the areas susceptible to wildfire in the Mediterranean Region of Turkey. Besides, the performance of XGBoost, CatBoost, Gradient Boost, AdaBoost, and LightGBM methods for wildfire susceptibility mapping is also examined. The results have revealed the higher testing accuracy of CatBoost (95.47%) algorithm, followed by LightGBM (94.70%), XGBoost (88.8%), AdaBoost (86.0%), and GBM (84.48%) algorithms. Resultant wildfire susceptibility maps provide proper inventories for forest engineers, planners, and local governments for future policies regarding disaster management in Turkey. |
Copyright: | © Sohaib K. M. Abujayyab et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.34 MB
- Informations
sur cette fiche - Reference-ID
10710980 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023