What Drives Construction Practitioners’ Acceptance of Intelligent Surveillance Systems? An Extended Technology Acceptance Model
Auteur(s): |
Ying Lu
Yunxuan Deng |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 18 janvier 2022, n. 2, v. 12 |
Page(s): | 104 |
DOI: | 10.3390/buildings12020104 |
Abstrait: |
With the advent of intelligent construction, the intelligent surveillance system using computer vision technology has emerged as a prominent tool to identify unsafe behaviors on construction sites. At the same time, it is still viewed with suspicion by the construction industry, and its penetration rate remains low. To promote the successful implementation of the intelligent surveillance system, this study applied the technology acceptance model approach and developed an intelligent surveillance system acceptance model (ISSTAM) containing 12 variables from individual, organizational, environmental, and technical perspectives. Questionnaires were distributed to construction industry practitioners, 220 of whom provided valid data. Moreover, a structural equation model (SEM) was established for hypothesis testing. The research results suggest that job relevance, government action, training, and technical support positively and indirectly influence the use intention. Meanwhile, perceived usefulness, perceived ease of use, and cost savings directly and positively affect use intention, while privacy risk is verified to have a negative impact upon use intention. This study can help the government, organizations, and technology developers better apply the intelligent surveillance system to improve safety management levels. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.97 MB
- Informations
sur cette fiche - Reference-ID
10657758 - Publié(e) le:
17.02.2022 - Modifié(e) le:
01.06.2022